Insights into the potential of potato production across Europe

P. van Loon Marloes , Alimagham Seyyedmajid , K. Abuley Isaac , Boogaard Hendrik , Boguszewska-Mańkowska Dominika , I. Ruiz de Galarreta Jose , H. Geling Edwin , Kryvobok Oleksii , Kryvoshein Oleksandr , Landeras Gorka , Okuda Natsumi , Parisi Bruno , Trawczyński Cezary , Zarzyńska Krystyna , K. van Ittersum Martin

Crop and Environment ›› 2025, Vol. 4 ›› Issue (2) : 97 -106.

PDF
Crop and Environment ›› 2025, Vol. 4 ›› Issue (2) : 97 -106. DOI: 10.1016/j.crope.2025.03.002
Original article

Insights into the potential of potato production across Europe

Author information +
History +
PDF

Abstract

Europe is an important potato producer, showing a strong decline in areas and increases in yield over the past decades, but with large regional differences. This study aims to characterise current European potato production by analysing yields, revealing yield gaps (Yg), and assessing key factors that explain actual (Ya) and potential yields (Yw, for rainfed systems; Yp, for irrigated systems). We selected 13 key potato producing countries, jointly accounting for 90​% of the European potato area. Local data were used to simulate Yw and Yp, while Ya was retrieved from sub-national statistics. Then, we analysed main factors affecting yields using boundary line analysis on nitrogen input and crop water availability. Results showed that European potato production on current acreage can increase by 55​% when yields would increase to 80​% of their potential. The largest potential production gains featured in eastern Europe (59​% Yg, 59​% of potato area), thereafter western Europe (32​% Yg, 25​% of potato area), and smallest gains in northern and southern Europe (43​% and 45​% Yg, with relatively small acreages of 9​% and 6​%, respectively). Our analysis revealed that nitrogen input was a limiting factor in eastern Europe, while we found substantial overuse in some western European countries. Under rainfed conditions, water was the main limiting factor in relatively few potato cultivation areas. In irrigated areas, e.g. in southern Europe, irrigation water requirements to approach Yp are large, which becomes increasingly challenging. Insights from this study can be used to guide future development and innovation in potato cultivation across Europe.

Keywords

Crop modelling / Europe / Nitrogen input / Potato / Water requirement / Yield gap analysis

Cite this article

Download citation ▾
P. van Loon Marloes, Alimagham Seyyedmajid, K. Abuley Isaac, Boogaard Hendrik, Boguszewska-Mańkowska Dominika, I. Ruiz de Galarreta Jose, H. Geling Edwin, Kryvobok Oleksii, Kryvoshein Oleksandr, Landeras Gorka, Okuda Natsumi, Parisi Bruno, Trawczyński Cezary, Zarzyńska Krystyna, K. van Ittersum Martin. Insights into the potential of potato production across Europe. Crop and Environment, 2025, 4(2): 97-106 DOI:10.1016/j.crope.2025.03.002

登录浏览全文

4963

注册一个新账户 忘记密码

Abbreviations

CWA crop water availability (evapotranspiration)

CZ climate zone

DM dry matter

FM fresh matter

GYGA Global Yield Gap Atlas

IEacc internal nutrient use efficiency at maximum accumulation

IEdil internal nutrient use efficiency at maximum dilution

IEmed medium internal nutrient use efficiency

NUE nutrient use efficiency

relYg relative yield gap

RWS reference weather station

SMU soil map unit

STU Soil Type Unit

TSUM1 thermal time requirement from emergence to tuber initiation

TSUM2 thermal time requirement from tuber initiation to maturity

TSUMEM thermal time requirement from planting to emergence

Ya actual yield

Yair actual yield irrigated water regime

Yarf actual yield rainfed water regime

Yg yield gap

Yp potential yield

Yw water-limited potential yield

WLI water limitation index

Availability of data and materials

All area, yield (Ya, Yg, Yp, and Yw), CWA, and WLI data are available at www.yieldgap.org.

Author's contributions

M.P. L. and S.A.: Conceptualization, writing, and reviewing; I.K.A., H.B, D.B.M., and J.I.R.G..: Writing, validation, and resources; E.H.G. and O.K.: Writing, methodology, and investigation; O.K., G.L., N.O., B.P., C.T., and K.Z.: Editing, validation, and resources; M.K.I.: Writing and conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We would like to acknowledge Herman Berghuijs and Allard de Wit (Wageningen University & Research, the Netherlands), Lars Bødker (SEGES Innovation, Denmark), Michel Martin (ARVALIS - Institut du vegetal, France), Gheorghe Olteanu (National Institute of Research and Development for Potato and Sugar Beet, Romania), Frederick Stoddard (University of Helsinki, Finland), and Kairsty Topp (Scotland's Rural College, United Kingdom) for their contributions to the collection of local agronomic data. Part of this work has been funded by the Spanish project PID2023-150406OR-C21.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.crope.2025.03.002.

References

[1]

Ahmadi, S.H., Andersen, M.N., Plauborg, F., Poulsen, R.T., Jensen, C.R., Sepaskhah, A.R., Hansen, S., 2010. Effects of irrigation strategies and soils on field grown potatoes: yield and water productivity. Agric. Water Manag. 97, 1923-1930.

[2]

Badr, M., El-Tohamy, W., Zaghloul, A., 2012. Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agric. Water Manag. 110, 9-15.

[3]

Birch, P.R., Bryan, G., Fenton, B., Gilroy, E.M., Hein, I., Jones, J.T., Prashar, A., Taylor, M.A., Torrance, L., Toth, I.K., 2012. Crops that feed the world 8: potato: are the trends of increased global production sustainable? Food Secur. 4, 477-508.

[4]

Camargo, D., Montoya, F., Ortega, J., Córcoles, J., 2015. Potato yield and water use efficiency responses to irrigation in semiarid conditions. Agron. J. 107, 2120-2131.

[5]

Cambouris, A.N., St Luce, M., Zebarth, B.J., Ziadi, N., Grant, C.A., Perron, I., 2016. Potato response to nitrogen sources and rates in an irrigated sandy soil. Agron. J. 108, 391-401.

[6]

Cantore, V., Wassar, F., Yamaç S., Sellami, M., Albrizio, R., Stellacci, A., Todorovic, M., 2014. Yield and water use efficiency of early potato grown under different irrigation regimes. Int. J. Plant Prod. 8, 409-428.

[7]

Chotkowski, J., Gaziński, B., 2011. Problem of fair competition on the single EU market-the case of potato starch. Economic 6, 89-98.

[8]

Connor, D.J., Loomis, R.S., Cassman, K.G., 2011. Crop Ecology: Productivity and Management in Agricultural Systems. Cambridge University Press.

[9]

Custodio, E., Andreu-Rodes, J.M., Aragón, R., Estrela, T., Ferrer, J., García-Aróstegui, J.L., Manzano, M., Rodríguez-Herńandez, L., Sahuquillo, A., del Villar, A., 2016. Groundwater intensive use and mining in south-eastern peninsular Spain: hydrogeological, economic and social aspects. Sci. Total Environ. 559, 302-316.

[10]

de Wit, A., Boogaard, H., Fumagalli, D., Janssen, S., Knapen, R., van Kraalingen, D., Supit, I., van der Wijngaart, R., van Diepen, K., 2019. 25 years of the WOFOST cropping systems model. Agric. Syst. 168, 154-167.

[11]

de Wit, A.J.W., Boogaard, H., Supit, I., van den Berg, M., 2020. System description of the WOFOST 7.2 cropping systems model. Wageningen Environmental Research 112p.

[12]

Devaux, A., Goffart, J.-P., Kromann, P., Andrade-Piedra, J., Polar, V., Hareau, G., 2021. The potato of the future: opportunities and challenges in sustainable agri-food systems. Potato Res. 64, 681-720.

[13]

Edreira, J.I.R., Guilpart, N., Sadras, V., Cassman, K.G., van Ittersum, M.K., Schils, R.L., Grassini, P., 2018. Water productivity of rainfed maize and wheat: a local to global perspective. Agric. For. Meteorol. 259, 364-373.

[14]

FAO, 2024. Production/Crops and Resource/Fertilizer. FAOSTAT Database Collections, Rome. Goffart, J.-P., Haverkort, A., Storey, M., Haase, N., Martin, M., Lebrun, P., Ryckmans, D., Florins, D., Demeulemeester, K., 2022. Potato production in northwestern Europe, Germany, France, The Netherlands, United Kingdom, Belgium: characteristics, issues, challenges and opportunities. Potato Res. 65, 503-547.

[15]

Grassini, P., van Bussel, L.G., van Wart, J., Wolf, J., Claessens, L., Yang, H., Boogaard, H., De Groot, H., Van Ittersum, M.K., Cassman, K.G., 2015. How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Res. 177, 49-63.

[16]

Haase, N.U., Haverkort, A.J., 2006. Potato Developments in a Changing Europe. Wageningen Academic Publishers.

[17]

Haverkort, A., De Ruijter, F., van Evert, F., Conijn, J., Rutgers, B., 2013. Worldwide sustainability hotspots in potato cultivation. 1. Identification and mapping. Potato Res. 56, 343-353.

[18]

Haverkort, A., Struik, P., 2015. Yield levels of potato crops: recent achievements and future prospects. Field Crops Res. 182, 76-85.

[19]

Hay, R.K.M., 1995. Harvest index: a review of its use in plant breeding and crop physiology. Ann. Appl. Biol. 126, 197-216.

[20]

Hijmans, R.J., 2003. The effect of climate change on global potato production. Am. J. Potato Res. 80, 271-279.

[21]

IFPRI, 2024. Global Spatially-Disaggregated Crop Production Statistics Data for 2020 Version 1.0.0.

[22]

Iwama, K., 2008. Physiology of the potato: new insights into root system and repercussions for crop management. Potato Res. 51, 333-353.

[23]

Jennings, S.A., Koehler, A.-K., Nicklin, K.J., Deva, C., Sait, S.M., Challinor, A.J., 2020. Global potato yields increase under climate change with adaptation and CO2 fertilisation. Front. Sustain. Food Syst. 4, 519324.

[24]

Koenker, R., 2024. Quantreg: quantile regression. R package version 5.98.

[25]

Kroes, J., Supit, I., Mulder, M., van Dam, J., van Walsum, P., 2016. Capillary rise affecting crop yields under different environmental conditions. Hydrol. Earth Syst. Sci. Discuss. 1-29.

[26]

Love, S.L., Manrique-Klinge, K., Stark, J.C., Quispe-Mamani, E., 2020. A short history of potato production systems. In: StarkJ., ThorntonM., NolteP.(eds) Potato Production Systems. Springer, Cham. pp. 1-17.

[27]

Ludemann, C., Hijbeek, R., van Loon, M., Murrell, S., Dobermann, A., van Ittersum, M., 2024. Field experimental data of crop yields, nutrient concentrations, and harvest indices from around the world. Dryad. (Access on https://doi.org/10.5061/dryad. djh9w0w4m)

[28]

Ludemann, C.I., Gruere, A., Heffer, P., Dobermann, A., 2022. Global data on fertilizer use by crop and by country. Sci. Data 9, 1-8.

[29]

Martínez-Romero, A., Domínguez, A., Landeras, G., 2019. Regulated deficit irrigation strategies for different potato cultivars under continental Mediterranean-Atlantic conditions. Agric. Water Manag. 216, 164-176.

[30]

Moravec, V., Markonis, Y., Rakovec, O., Svoboda, M., Trnka, M., Kumar, R., Hanel, M., 2021. Europe under multi-year droughts: how severe was the 2014-2018 drought period? Environ. Res. Lett. 16, 034062.

[31]

Nasir, M.W., Toth, Z., 2022. Effect of drought stress on potato production: a review. Agronomy 12, 635.

[32]

Nurmanov, Y.T., Chernenok, V.G., Kuzdanova, R.S., 2019. Potato in response to nitrogen nutrition regime and nitrogen fertilization. Field Crops Res. 231, 115-121.

[33]

R, Core Team, 2024. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

[34]

Ravensbergen, A.P.P., van Ittersum, M.K., Hijbeek, R., Kempenaar, C., Reidsma, P., 2024a. Field monitoring reveals scope to reduce environmental impact of ware potato cultivation in The Netherlands without compromising yield. Agric. Syst. 220, 104091.

[35]

Ravensbergen, A.P.P., van Ittersum, M.K., Kempenaar, C., Ramsebner, N., de Wit, D., Reidsma, P., 2024b. Coupling field monitoring with crop growth modelling provides detailed insights on yield gaps at field level: a case study on ware potato production in The Netherlands. Field Crops Res. 308, 109295.

[36]

Ravensbergen, A.P.P., van Ittersum, M.K., Kempenaar, C., Reidsma, P., 2023. Current phosphorus and potassium fertiliser application rates do not limit tuber yield and quality in potato production systems in The Netherlands. Potato Res. 66, 1033-1058.

[37]

Ravensbergen, A.P.P., Zou, C., Struik, P.C., Reidsma, P., Kempenaar, C., van Ittersum, M.K., 2024c. Effects of planting date and field type outweighed the effect of seed origin on ware potato yield. Potato Res. 3, 1-17.

[38]

Raymundo, R., Asseng, S., Robertson, R., Petsakos, A., Hoogenboom, G., Quiroz, R., Hareau, G., Wolf, J., 2018. Climate change impact on global potato production. Eur. J. Agron. 100, 87-98.

[39]

Riediger, J., Breckling, B., Nuske, R.S., Schröder, W., 2014. Will climate change increase irrigation requirements in agriculture of Central Europe? A simulation study for Northern Germany. Environ. Sci. Eur. 26, 1-13.

[40]

Sadras, V., Cassman, K., Grassini, P., Bastiaanssen, W., Laborte, A., Milne, A., Sileshi, G., Steduto, P., 2015. Yield Gap Analysis of Field Crops: Methods and Case Studies, FAO Water Reports No.41, Rome, Italy.

[41]

Silva, J.V., Reidsma, P., Laborte, A.G., van Ittersum, M.K., 2017a. Explaining rice yields and yield gaps in Central Luzon, Philippines: an application of stochastic frontier analysis and crop modelling. Eur. J. Agron. 82, 223-241.

[42]

Silva, J.V., Reidsma, P., van Ittersum, M.K., 2017b. Yield gaps in Dutch arable farming systems: analysis at crop and crop rotation level. Agric. Syst. 158, 78-92.

[43]

Smit, A.L., Groenwold, J., 2005. Root characteristics of selected field crops: data from the Wageningen Rhizolab, 1990-2002. Plant Soil 272, 365-384.

[44]

Soltani, A., Alimagham, S.M., Nehbandani, A., Torabi, B., Zeinali, E., Zand, E., Vadez, V., van Loon, M.P., van Ittersum, M.K., 2020. Future food self-sufficiency in Iran: a model-based analysis. Global Food Secur. 24, 100351.

[45]

Ştefan, F.M., Chiru, S., Iliev, P., Ilieva, I., Zhevora, S., Oves, E., Polgar, Z., Balogh, S., 2023. Potato production in eastern europe, Romania, Republic of Moldova, Russia and Hungary. In: PotatoProduction Worldwide.Elsevier, pp.381-395.

[46]

ten Den, T., van de Wiel, I., de Wit, A., van Evert, F.K., van Ittersum, M.K., Reidsma, P., 2022. Modelling potential potato yields: accounting for experimental differences in modern cultivars. Eur. J. Agron. 137, 126510.

[47]

van Bussel, L.G., Grassini, P., Van Wart, J., Wolf, J., Claessens, L., Yang, H., Boogaard, H., de Groot, H., Saito, K., Cassman, K.G., 2015. From field to atlas: upscaling of location- specific yield gap estimates. Field Crops Res. 177, 98-108.

[48]

van Grinsven, H.J.M., Ebanyat, P., Glendining, M., Gu, B., Hijbeek, R., Lam, S.K., Lassaletta, L., Mueller, N.D., Pacheco, F.S., Quemada, M., Bruulsema, T.W., Jacobsen, B.H., ten Berge, H.F.M., 2022. Establishing long-term nitrogen response of global cereals to assess sustainable fertilizer rates. Nature Food 3, 122-132.

[49]

van Ittersum, M.K., Cassman, K.G., Grassini, P., Wolf, J., Tittonell, P., Hochman, Z., 2013. Yield gap analysis with local to global relevance—a review. Field Crops Res. 143, 4-17.

[50]

van Noordwijk, M., Brussaard, L., 2014. Minimizing the ecological footprint of food: closing yield and efficiency gaps simultaneously? Curr. Opin. Environ. Sustain. 8, 62-70.

[51]

van Oort, P., Timmermans, B., Schils, R., Van Eekeren, N., 2023. Recent weather extremes and their impact on crop yields of The Netherlands. Eur. J. Agron. 142, 126662.

[52]

van Oort, P.A.J., Saito, K., Dieng, I., Grassini, P., Cassman, K.G., van Ittersum, M.K., 2017. Can yield gap analysis be used to inform R&D prioritisation? Global Food Secur. 12, 109-118.

[53]

van Wart, J., van Bussel, L.G.J., Wolf, J., Licker, R., Grassini, P., Nelson, A., Boogaard, H., Gerber, J., Mueller, N.D., Claessens, L., 2013. Use of agro-climatic zones to upscale simulated crop yield potential. Field Crops Res. 143, 44-55.

[54]

Vos, J., 2009. Nitrogen responses and nitrogen management in potato. Potato Res. 52, 305-317.

[55]

Wang, N., Reidsma, P., Pronk, A., de Wit, A., van Ittersum, M., 2018. Can potato add to China's food self-sufficiency? The scope for increasing potato production in China. Eur. J. Agron. 101, 20-29.

[56]

Weisz, R., Kaminski, J., Smilowitz, Z., 1994. Water deficit effects on potato leaf growth and transpiration: utilizing fraction extractable soil water for comparison with other crops. Am. Potato J. 71, 829-840.

[57]

Wijesinha-Bettoni, R., Mouillé B., 2019. The contribution of potatoes to global food security, nutrition and healthy diets. Am. J. Potato Res. 96, 139-149.

AI Summary AI Mindmap
PDF

452

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/