Simulating crop yields and water productivity for three cotton-based cropping systems in the Texas High Plains

Ghimire Bishnu , Adedeji Oluwatola , L. Ritchie Glen , Guo Wenxuan

Crop and Environment ›› 2025, Vol. 4 ›› Issue (2) : 83 -96.

PDF
Crop and Environment ›› 2025, Vol. 4 ›› Issue (2) : 83 -96. DOI: 10.1016/j.crope.2025.03.001
Original article

Simulating crop yields and water productivity for three cotton-based cropping systems in the Texas High Plains

Author information +
History +
PDF

Abstract

Implementing appropriate cropping systems suited to specific soil types and climatic conditions is crucial for improving crop yield and conserving water in semi-arid environments. The Decision Support System for Agrotechnology Transfer (DSSAT) was applied to simulate crop yields of cotton, sorghum, and winter wheat across three cropping systems, including continuous cotton, cotton-sorghum, and cotton-wheat. Simulations were conducted for 48 fields with various soil types across six counties in the Texas High Plains, spanning growing seasons from 2000 to 2022. Cotton water productivity, derived from DSSAT-simulated cotton yield and crop evapotranspiration (ET), was compared among these cropping systems. The DSSAT demonstrated good performance (R2 ​≥ ​0.79, nRMSE ​≤ ​15.74%, and d-index ​≥ ​0.95) in predicting yields of cotton, sorghum, and winter wheat. The CROPGRO-Cotton model showed slightly better accuracy in predicting cotton yield under the continuous cotton system than under the cotton-sorghum and cotton-wheat systems. Model performance was similar across different soil types, with slightly higher accuracy in fine-textured soils such as clay loam (R2 ​≥ ​0.84, MAPE ​= ​12.35, and d-index ​= ​0.95) than in other soils (R2 ​≤ ​0.82, MAPE ​≥ ​13.76, and d-index ​≤ ​0.94). Additionally, the model performance varied by season, showing high accuracy in years with adequate precipitation but generally underpredicting cotton yields in drought seasons. Among the three cropping systems, cotton yield and water productivity were the highest for the cotton-sorghum system (6.3 ​kg ​ha−1 ​mm−1), followed by the cotton-wheat and continuous cotton systems. Overall, the DSSAT models effectively captured the effects of management practices, soil types, and growing seasons in predicting crop yield and crop water productivity across three cotton-based cropping systems. The findings provide valuable information for decision support in adopting cropping systems across various soil types and environmental conditions, fostering sustainable agriculture and water conservation in semi-arid regions.

Keywords

Cotton / Cropping systems / DSSAT / Sorghum / Wheat / Yield and water productivity

Cite this article

Download citation ▾
Ghimire Bishnu, Adedeji Oluwatola, L. Ritchie Glen, Guo Wenxuan. Simulating crop yields and water productivity for three cotton-based cropping systems in the Texas High Plains. Crop and Environment, 2025, 4(2): 83-96 DOI:10.1016/j.crope.2025.03.001

登录浏览全文

4963

注册一个新账户 忘记密码

Abbreviations

AcA Acuff loam (0-1% slope)

AfA Amarillo fine sandy loam (0-1% slope)

AIB Amarillo loam (1-3% slope)

AmB Amarillo loamy fine sand (0-3% slope)

Br Brownfield fine sand (0-3% slope)

CERES Crop Environment Resource Synthesis

CV (%) coefficient of variation in percentage

CWP crop water productivity

d-index agreement index

DSSAT Decision Support System for Agrotechnology Transfer

EcB Estacado clay loam (1-3% slope)

ET evapotranspiration

GRIDMET gridded meteorological dataset

LoA Lofton clay loam (0-1% slope)

MAPE mean absolute percentage error

NCCPI national commodity crop productivity index 3.0

nRMSE normalized root mean square error

OcA Olton clay loam (0-1% slope)

OtA Olton loam (0-1% slope)

PuA Pullman clay loam (0-1% slope)

PuB Pullman clay loam (1-3% slope)

R2 coefficient of determination

Sh Springer loamy fine sand (0-1% slope)

SLPF soil fertility factor

SOC soil organic carbon

SpB Spur fine sandy loam (1-3% slope)

SSURGO soil geographic database

Tv Tivoli fine sand (0-1% slope)

Availability of data and materials

The management data for each field and each year of this study are available in the appendix as supplementary documents, weather data are available in GRIDMET, and soil data are available in the SSURGO database.

Authors’ contributions

B.G., O.A., G.R., and W.G.: Writing, reviewing, and editing; B.G., O.A., and W.G.: Data curation; B.G. and W.G.: Methodology, investigation, and conceptualization; G.R. and W.G.: Validation; B.G.: Writing of original draft, visualization, and data analysis; and W.G.: Supervision, software, resources, project administration, and funding acquistion.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Author Wenxuan Guo (Editorial Board member) was not involved in the journal's review nor decisions related to this manuscript.

Acknowledgements

We appreciate the financial support from Cotton Incorporated ​(​16-252TX), ​USDA NIFA and Cotton Board (2022-67013-36992), and USDA NIFA Hatch (9898).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.crope.2025.03.001.

References

[1]

Abatzoglou, J.T., 2013. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121-131.

[2]

Adhikari, P., Ale, S., Bordovsky, J.P., Thorp, K.R., Modala, N.R., Rajan, N., Barnes, E.M., 2016. Simulating future climate change impacts on seed cotton yield in the Texas High Plains using the CSM-CROPGRO-Cotton model. Agric. Water Manage. 164, 317-330.

[3]

Adhikari, P., Omani, N., Ale, S., DeLaune, P.B., Thorp, K.R., Barnes, E.M., Hoogenboom, G., 2017. Simulated effects of winter wheat cover crop on cotton production systems of the Texas Rolling Plains. Trans. ASABE 60, 2083-2096.

[4]

Ahmed, M., Ahmad, S., Abbas, G., Hussain, S., Hoogenboom, G., 2024. Cotton-wheat system. In: Ahmed, M., Ahmad, S., Abbas, G., Hussain, S., Hoogenboom, G. (Eds.), Cropping Systems Modeling under Changing Climate. Springer Nature, Singapore, pp. 143-171.

[5]

Aiken, R.M., Stockton, M.C., 2019. Soil and water conservation with residue management in the Great Plains. J. Soil Water Conserv. 74, 445-453.

[6]

Akinseye, F.M., Adam, M., Agele, S.O., Hoffmann, M.P., Traore, P.C.S., Whitbread, A.M., 2017. Assessing crop model improvements through comparison of sorghum (sorghum bicolor L. moench) simulation models: A case study of West African varieties. Field Crops Res. 201, 19-31.

[7]

Akumaga, U., Alderman, P.D., 2019. Comparison of Penman-Monteith and Priestley- Taylor evapotranspiration methods for crop modeling in Oklahoma. Agron. J. 111, 1171-1180.

[8]

Ale, S., Himanshu, S.K., Mauget, S.A., Hudson, D., Goebel, T.S., Liu, B., Baumhardt, R.L., Bordovsky, J.P., Brauer, D.K., Lascano, R.J., Gitz, D.C., 2021. Simulated dryland cotton yield response to selected scenario factors associated with soil health. Front. Sustain. Food Syst. 4, 617509.

[9]

Allen, V.G., Baker, M.T., Segarra, E., Brown, C.P., 2007. Integrated irrigated crop-livestock systems in dry climates. Agron. J. 99, 346-360.

[10]

Allen, V.G., Brown, C.P., Segarra, E., Green, C.J., Wheeler, T.A., Acosta-Martinez, V., Zobeck, T.M., 2008. In search of sustainable agricultural systems for the Llano Estacado of the U.S. Southern High Plains. Agric. Ecosyst. Environ. 124, 3-12.

[11]

Antle, J.M., Basso, B., Conant, R.T., Godfray, H.C.J., Jones, J.W., Herrero, M., Howitt, R.E., Keating, B.A., Munoz-Carpena, R., Rosenzweig, C., Tittonell, P., Wheeler, T.R., 2017. Towards a new generation of agricultural system data, models and knowledge products: Design and improvement. Agric. Syst. 155, 255-268.

[12]

Araya, A., Kisekka, I., Gowda, P.H., Prasad, P.V., 2017. Evaluation of water-limited cropping systems in a semi-arid climate using DSSAT-CSM. Agric. Syst. 150, 86-98.

[13]

Attia, A., Rajan, N., Xue, Q., Nair, S., Ibrahim, A., Hays, D., 2016. Application of DSSAT- CERES-Wheat model to simulate winter wheat response to irrigation management in the Texas High Plains. Agric. Water Manage. 165, 50-60.

[14]

Awal, R., Habibi, H., Fares, A., Deb, S., 2020. Estimating reference crop evapotranspiration under limited climate data in West Texas. J. Hydrol. Reg. Stud. 28, 100677.

[15]

Banger, K., Nafziger, E.D., Wang, J., Muhammad, U., Pittelkow, C.M., 2018. Simulating nitrogen management impacts on maize production in the U.S. Midwest. PLoS One 13, e0201825.

[16]

Barnes, E.M., Campbell, B.T., Vellidis, G., Porter, W.M., Payero, J.O., Leib, B.G., Sui, R., Fisher, D.K., Anapalli, S., Colaizzi, P.D., Bordovsky, J.P., Porter, D.O., Mahan, S.A.J., Taghvaeian, S., Thorp, K.R., 2020. Forty years of increasing cotton’s water productivity and why the trend will continue. Appl. Eng. Agric. 36, 457-478.

[17]

BASF, 2024. FM 2322GL variety, Badische Anilin-und-Soda-Fabrik Inc. Available at: htt ps://agriculture.basf.us/crop-protection/products/seeds/fibermax/fm-2322gl-variety.html. (Accessed 30 November 2024).

[18]

Batchelor, W.D., Basso, B., Paz, J.O., 2002. Examples of strategies to analyze spatial and temporal yield variability using crop models. Eur. J. Agron. 18, 141-158.

[19]

Baumhardt, R.L., Johnson, G.L., Schwartz, R.C., 2012. Residue and long-term tillage and crop rotation effects on simulated rain infiltration and sediment transport. Soil Sci. Soc. Am. J. 76, 1370-1378.

[20]

Bayer, AG, 2024. Sorghum seed DKS44-07, Bayer Aktiengesellschaft Inc. Available at: https://www.cropscience.bayer.us/d/dekalb-dks44-07-sorghum. (Accessed 1 December 2024)

[21]

Bonciarelli, U., Onofri, A., Benincasa, P., Farneselli, M., Guiducci, M., Pannacci, E., Tosti, G., Tei, F., 2016. Long-term evaluation of productivity, stability and sustainability for cropping systems in Mediterranean rainfed conditions. Eur. J. Agron. 77, 146-155.

[22]

Boogaard, H.L., de Wit, A.J.W., te Roller, J.A., van Diepen, C.A., 2014. WOFOST CONTROL CENTRE 2.1: User’s Guide for the WOFOST CONTROL CENTRE 2.1 and the Crop Growth Simulation Model WOFOST 7.1.7. Alterra, Wageningen, The Netherlands.

[23]

Boote, K.J., Jones, J.W., Pickering, N.B., 1996. Potential uses and limitations of crop models. Agron. J. 88, 704-716.

[24]

Bordovsky, J.P., Lyle, W.M., Keeling, J.W., 1994. Crop rotation and tillage effects on soil water and cotton yield. Agron. J. 86, 1-6.

[25]

Bordovsky, J.P., Mustian, J.T., Cranmer, A.M., Emerson, C.L., 2011. Cotton-grain sorghum rotation under extreme deficit irrigation conditions. Appl. Eng. Agric. 27, 359-371.

[26]

Chen, N., Li, X., Shi, H., Hu, Q., Zhang, Y., Sun, Y., Song, F., 2021. Simulation of maize crop growth using an improved crop model considering the disintegrated area of biodegradable film. Field Crops Res. 272, 108270.

[27]

Chen, Y., Marek, G.W., Marek, T.H., Moorhead, J.E., Heflin, K.R., Brauer, D.K., Prasanna, H.G., Srinivasan, R., 2018. Assessment of alternative agricultural land use options for extending the availability of the Ogallala Aquifer in the Northern High Plains of Texas. Hydrology 5, 53.

[28]

Corbeels, M., Chirat, G., Messad, S., Thierfelder, C., 2016. Performance and sensitivity of the DSSAT crop growth model in simulating maize yield under conservation agriculture. Eur. J. Agron. 76, 41-53.

[29]

Deines, J.M., Kendall, A.D., Butler, J.J., Hyndman, D.W., 2019. Quantifying irrigation adaptation strategies in response to stakeholder-driven groundwater management in the US High Plains Aquifer. Environ. Res. Lett. 14, 044014.

[30]

Dettori, M., Cesaraccio, C., Motroni, A., Spano, D., Duce, P., 2011. Using CERES-Wheat to simulate durum wheat production and phenology in Southern Sardinia, Italy. Field Crops Res. 120, 179-188.

[31]

dos Santos, A., da Silva Matos, E., da Silva Freddi, O., Galbieri, R., Lal, R., 2020. Cotton production systems in the Brazilian Cerrado: The impact of soil attributes on field- scale yield. Eur. J. Agron. 118, 126090.

[32]

Estes, L.D., Bradley, B.A., Beukes, H., Hole, D.G., Lau, M., Oppenheimer, M.G., Schulze, R., Tadross, M.A., Turner, W.R., 2013. Comparing mechanistic and empirical model projections of crop suitability and productivity: implications for ecological forecasting. Glob. Ecol. Biogeogr. 22, 1007-1018.

[33]

Fan, Y., Himanshu, S.K., Ale, S., DeLaune, P.B., Zhang, T., Park, S.C., Colaizzi, P.D., Evett, S.R., Baumhardt, R.L., 2022. The synergy between water conservation and economic profitability of adopting alternative irrigation systems for cotton production in the Texas High Plains. Agric. Water Manage. 262, 107386.

[34]

Feng, L., Mathis, G., Ritchie, G., Han, Y., Li, Y., Wang, G., Zhi, X., Bednarz, C.W., 2014. Optimizing irrigation and plant density for improved cotton yield and fiber quality. Agron. J. 106, 1111-1118.

[35]

Fry, J., Guber, A.K., Ladoni, M., Munoz, J.D., Kravchenko, A.N., 2017. The effect of up-scaling soil properties and model parameters on predictive accuracy of DSSAT crop simulation model under variable weather conditions. Geoderma 287, 105-115.

[36]

Fu, B., Chen, L., Huang, H., Qu, P., Wei, Z., 2021. Impacts of crop residues on soil health: a review. Env. Pollut. Bioavail. 33, 164-173.

[37]

Garibay, V.M., Kothari, K., Ale, S., Gitz, D.C., Morgan, G.D., Munster, C.L., 2019. Determining water-use-efficient irrigation strategies for cotton using the DSSAT CSM CROPGRO-cotton model evaluated with in-season data. Agric. Water Manage. 223, 105695.

[38]

Gavasso-Rita, Y.L., Papalexiou, S.M., Li, Y., Elshorbagy, A., Li, Z., Schuster-Wallace, C., 2024. Crop models and their use in assessing crop production and food security: A review. Food Energy Secur. 13, e503.

[39]

Ghidey, F., Alberts, E.E., 1993. Residue type and placement effects on decomposition: field study and model evaluation. Trans. ASABE 36, 1611-1617.

[40]

Gijsman, A.J., Thornton, P.K., Hoogenboom, G., 2007. Using the WISE database to parameterize soil inputs for crop simulation models. Comput. Electron. Agric. 56, 85-100.

[41]

Godwin, D.C., Singh, U., 1998. Nitrogen balance and crop response to nitrogen in upland and lowland cropping systems. In: Tsuji, G.Y., Hoogenboom, G., Thornton, P.K. (Eds.), Understanding Options for Agricultural Production: System Approaches for Sustainable Agricultural Development. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 55-77.

[42]

Gohain, G.B., Singh, K.K., Singh, R.S., Dakhore, K.K., Ghosh, K., 2022. Application of CERES-sorghum crop simulation model DSSAT v4.7 for determining crop water stress in crop phenological stages. Model. Earth Syst. Environ. 8, 1963-1975.

[43]

Guo, W., 2018. Spatial and temporal trends of irrigated cotton yield in the Southern High Plains. Agronomy 8, 298.

[44]

Guo, W., Cui, S., Torrion, J., Rajan, N., 2015. Data-driven precision agriculture:opportunities and challenges. In: Lal, R., Stewart, B.A. (Eds.), Soil-Specific Farming: Precision Agriculture. CRC Press, Boca Raton, USA, pp. 353-372.

[45]

Holzworth, D.P., Huth, N.I., deVoil, P.G., Zurcher, E.J., Herrmann, N.I., McLean, G., Chenu, K., van Oosterom, E.J., Snow, V., Murphy, C., Moore, A.D., Brown, H., Whish, J.P.M., Verrall, S., Fainges, J., Bell, L.W., Peake, A.S., Poulton, P.L., Hochman, Z., Thorburn, P.J., Gaydon, D.S., Dalgliesh, N.P., Rodriguez, D., Cox, H., Chapman, S., Doherty, A., Teixeira, E., Sharp, J., Cichota, R., Vogeler, I., Li, F.Y., Wang, E., Hammer, G.L., Robertson, M.J., Dimes, J.P., Whitbread, A.M., Hunt, J., van Rees, H., McClelland, T., Carberry, P.S., Hargreaves, J.N.G., Macleod, N., McDonald, C., Harsdorf, J., Wedgwood, S., Keating, B.A., 2014. APSIM - Evolution towards a new generation of agricultural systems simulation. Environ. Modell. Softw. 62, 327-350.

[46]

Hoogenboom, G., Jones, J.W., Traore, P.C., Boote, K.J., 2012. Experiments and data for model evaluation and application. In: Kihara, J., Fatondji, D., Jones, J.W., Hoogenboom, G., Tabo, R., Bationo, A. (Eds.), Improving Soil Fertility Recommendations in Africa Using DSSAT. Springer, Dordrecht, The Netherlands, pp. 9-18.

[47]

Hoogenboom, G., Porter, C.H., Boote, K.J., Shelia, V., Wilkens, P.W., Singh, U., White, J.W., Asseng, S., Lizaso, J.I., Moreno, L.P., Pavan, W., Ogoshi, R., Hunt, L.A., Tsuji, G.Y., Jones, J.W., 2019. The DSSAT crop modeling ecosystem. In: Boote, K.J. (Ed.), Advances in Crop Modelling for a Sustainable Agriculture. Burleigh Dodds Science Publishing, Cambridge, UK, pp.173-216.

[48]

Hussain, J., Khaliq, T., Ahmad, A., Akhtar, J., 2018. Performance of four crop models for simulations of wheat phenology, leaf growth, biomass and yield across planting dates. PLoS One 13, e0197546.

[49]

Iqbal, M.A., Shen, Y., Stricevic, R., Pei, H., Sun, H., Amiri, E., Penas, A., del Rio, S., 2014. Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agric. Water Manage. 135, 61-72.

[50]

Jamieson, P.D., Porter, J.R., Wilson, D.R., 1991. A test of the computer simulation model ARCWHEAT 1 on wheat crops grown in New Zealand. Field Crops Res. 27, 337-350.

[51]

Joshi, V.R., Thorp, K.R., Coulter, J.A., Johnson, G.A., Porter, P.M., Strock, J.S., Garcia, A.G.Y., 2019. Improving site-specific maize yield estimation by integrating satellite multispectral data into a crop model. Agronomy 9, 719.

[52]

Keeling, C.D., Piper, S.C., Bacastow, R.B., Wahlen, M., Whorf, T.P., Heimann, M., Meijer, H.A., 2001. Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. SIO Ref. No. 1-6, 1-28.

[53]

Knörzer, H., Lawes, R., Robertson, M., Graeff-Hönninger, S., Claupein, W., 2011. Evaluation and performance of the APSIM crop growth model for German winter wheat, maize and fieldpea varieties in monocropping and intercropping systems. J. Agric. Sci. Technol. 1, 698-717.

[54]

Kornecki, T.S., Arriaga, F.J., Price, A.J., Balkcom, K.S., 2012. Effects of different residue management methods on cotton establishment and yield in a no-till system. Appl. Eng. Agric. 28, 787-794.

[55]

Kothari, K., Ale, S., Bordovsky, J.P., Thorp, K.R., Porter, D.O., Munster, C.L., 2019. Simulation of efficient irrigation management strategies for grain sorghum production over different climate variability classes. Agric. Syst, 170, 49-62.

[56]

Kumar, K., Parihar, C.M., Sena, D.R., Godara, S., Patra, K., Sarkar, A., Reddy, K.S., Ghasal, P.C., Bharadwaj, S., Meena, A.L., Das, T.K., Jat, S.L., Sharma, D.K., Saharawat, Y.S., Gathala, M.K., Singh, U., Nayak, H.S., 2024. Modeling the growth, yield and N dynamics of wheat for decoding the tillage and nitrogen nexus in 8-years long-term conservation agriculture based maize-wheat system. Front. Sustain. Food Syst. 8, 1321472.

[57]

Li, M., Du, Y., Zhang, F., Fan, J., Ning, Y., Cheng, H., Xiao, C., 2020. Modification of CSM- CROPGRO-Cotton model for simulating cotton growth and yield under various deficit irrigation strategies. Comput. Electron. Agric. 179, 105843.

[58]

Lobet, G., Couvreur, V., Meunier, F., Javaux, M., Draye, X., 2014. Plant water uptake in drying soils. Plant Physiol. 164, 1619-1627.

[59]

Lollato, R.P., Figueiredo, B.M., Dhillon, J.S., Arnall, D.B., Raun, W.R., 2019. Wheat grain yield and grain-nitrogen relationships as affected by N, P, and K fertilization: A synthesis of long-term experiments. Field Crops Res. 236, 42-57.

[60]

Mao, L., Guo, W., Yuan, Y., Qin, D., Wang, S., Nie, J., Zhao, N., Song, X., Sun, X., 2019. Cotton stubble effects on yield and nutrient assimilation in coastal saline soil. Field Crops Res. 239, 71-81.

[61]

Marek, T.H., Colaizzi, P.D., Evett, S.R., 2016. Drought-resilient cropping systems in semi- arid climates. Agron. J. 108, 2423-2434.

[62]

Mauget, S.A., Himanshu, S.K., Goebel, T.S., Ale, S., Lascano, R.J., Gitz, D.C., 2021. Soil and soil organic carbon effects on simulated Southern High Plains dryland cotton production. Soil Tillage Res. 212, 105040.

[63]

Mavromatis, T., Boote, K.J., Jones, J.W., Irmak, A., Shinde, D., Hoogenboom, G., 2001. Developing genetic coefficients for crop simulation models with data from crop performance trials. Crop Sci. 41, 40-51.

[64]

McGuire, V.L., 2017. Water-level and Recoverable Water in Storage Changes, High Plains Aquifer, Predevelopment to 2015 and 2013-15. US Geological Survey, Reston, USA. Mehrabi, F., Sepaskhah, A.R., 2020. Winter wheat yield and DSSAT model evaluation in a diverse semi-arid climate and agronomic practices. Int. J. Plant Prod. 14, 221-243.

[65]

Mishra, S.K., Kaur, V., Singh, K., 2021. Evaluation of DSSAT-CROPGRO-cotton model to simulate phenology, growth, and seed cotton yield in northwestern India. Agron. J. 113, 3975-3990.

[66]

Moberly, J.T., Aiken, R.M., Lin, X., Schlegel, A.J., Baumhardt, R.L., Schwartz, R.C., 2017. Crop water production functions of grain sorghum and winter wheat in Kansas and Texas. J. Contemp. Wat. Res. Educ. 162, 42-60.

[67]

Modala, N.R., Ale, S., Rajan, N., Munster, C.L., DeLaune, P.B., Thorp, K.R., Nair, S.S., Barnes, E.M., 2015. Evaluation of the CSM-CROPGRO-Cotton model for the Texas Rolling Plains region and simulation of deficit irrigation strategies for increasing water use efficiency. Trans. ASABE 58, 685-696.

[68]

Motta, A.C.V., Reeves, D.W., Burmester, C., Feng, Y., 2007. Conservation tillage, rotations, and cover crop affecting soil quality in the Tennessee Valley: particulate organic matter, organic matter, and microbial biomass. Commun. Soil Sci. Plant Anal. 38, 2831-2847.

[69]

Mulla, D.J., 2017. Spatial variability in precision agriculture. In: Shekhar, S., Xiong, H., Zhou, X. (Eds.), Encyclopedia of GIS. Springer, Cham, Switzerland, pp. 1-8.

[70]

Neupane, J., Guo, W., West, C.P., Zhang, F., Lin, Z., 2021. Effects of irrigation rates on cotton yield as affected by soil physical properties and topography in the Southern High Plains. PLoS One 16, e0258496.

[71]

Oliveira, F.A.A., Jones, J.W., Pavan, W., Bhakta, M., Vallejos, C.E., Correll, M.J., Boote, K.J., Fernandes, J.M.C., Hölbig, C.A., Hoogenboom, G., 2021. Incorporating a dynamic gene- based process module into a crop simulation model. In Silico Plants 3, diab011.

[72]

Onofri, A., Seddaiu, G., Piepho, H.P., 2016. Long-Term Experiments with cropping systems: Case studies on data analysis. Eur. J. Agron. 77, 223-235.

[73]

Parihar, C.M., Nayak, H.S., Rai, V.K., Jat, S.L., Parihar, N., Aggarwal, P., Mishra, A.K., 2019. Soil water dynamics, water productivity and radiation use efficiency of maize under multi-year conservation agriculture during contrasting rainfall events. Field Crops Res. 241, 107570.

[74]

Ping, J.L., Green, C.J., Bronson, K.F., Zartman, R.E., Dobermann, A., 2004. Identification of relationships between cotton yield, quality, and soil properties. Agron. J. 96, 1588-1597.

[75]

Pluske, W., Murphy, D., Sheppard, J., 2024. Total organic carbon. October 2023).

[76]

Porter, C.H., Jones, J.W., Adiku, S., Gijsman, A.J., Gargiulo, O., Naab, J.B., 2010. Modeling organic carbon and carbon-mediated soil processes in DSSAT v4.5. Oper. Res. 10, 247-278.

[77]

R, Core Team, 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

[78]

Ray, R.L., Fares, A., Risch, E., 2018. Effects of drought on crop production and cropping areas in Texas. Agric. Environ. Lett. 3, 170037.

[79]

Reckling, M., Hecker, J.M., Bergkvist, G., Watson, C.A., Zander, P., Schläfke, N., Stoddard, F.L., Eory, V., Topp, C.F.E., Maire, J., Bachinger, J., 2016. A cropping system assessment framework—Evaluating effects of introducing legumes into crop rotations. Eur. J. Agron. 76, 186-197.

[80]

Ritchie, J.T., 1998. Soil water balance and plant water stress. In: Tsuji, G.Y., Hoogenboom, G., Thornton, P.K. (Eds.), Understanding Options for Agricultural Production. Springer, Dordrecht, Netherlands, pp. 41-54.

[81]

Rudd, J.C., Devkota, R.N., Baker, J.A., Peterson, G.L., Lazar, M.D., Bean, B., Worrall, D., Baughman, T., Marshall, D., Sutton, R., Rooney, L.W., Nelson, L.R., Fritz, A.K., Weng, Y., Morgan, G.D., Seabourn, B.W., 2014. ‘TAM 112’ wheat, resistant to greenbug and wheat curl mite and adapted to the dryland production system in the Southern High Plains. J. Plant Regist. 8, 291-297.

[82]

Saxton, K.E., Rawls, W.J., Romberger, J.S., Papendick, R.I., 1986. Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Am. J. 50, 1031-1036.

[83]

Scanlon, B.R., Faunt, C.C., Longuevergne, L., Reedy, R.C., Alley, W.M., McGuire, V.L., McMahon, P.B., 2012. Groundwater depletion and sustainability of irrigation in the US high Plains and central valley. Proc. Natl. Acad. Sci. U. S. A. 109, 9320-9325.

[84]

Schaefer, C.R., Ritchie, G.L., Bordovsky, J.P., Lewis, K., Kelly, B., 2018. Irrigation timing and rate affect cotton boll distribution and fiber quality. Agron. J. 110, 922-931.

[85]

Scopel, E., da Silva, F.A.M., Corbeels, M., Affholder, F., Maraux, F., 2004. Modelling crop residue mulching effects on water use and production of maize under semi-arid and humid tropical conditions. Agronomie 24, 383-395.

[86]

Simão, L.M., Cruppe, G., Michaud, J.P., Schilling, W.F., Diaza, D.R., Dille, A.J., Rice, C.W., Lollato, R.P., 2024. Beyond grain: Agronomic, ecological, and economic benefits of diversifying crop rotations with wheat. Adv. Agron. 186, 51-112.

[87]

Singh, J., Ale, S., DeLaune, P.B., Himanshu, S.K., Barnes, E.M., 2022. Modeling the impacts of cover crops and no-tillage on soil health and cotton yield in an irrigated cropping system of the Texas Rolling Plains. Field Crops Res. 287, 108661.

[88]

Smithers, J., Schulze, R., 1995. ACRU hydrological modelling system: user manual version 3. Water Research Commission, Pretoria, South Africa.

[89]

Soltani, A., Sinclair, T.R., 2012. Soil water balance. In: Soltani, A., Sinclair, T.R. (Eds.), Modeling Physiology of Crop Development, Growth and Yield. CAB International, Wallingford, England, pp. 170-191.

[90]

Staggenborg, S.A., Vanderlip, R.L., 2005. Crop simulation models can be used as dryland cropping systems research tools. Agron. J. 97, 378-384.

[91]

Steiner, J.L., Briske, D.D., Brown, D.P., Rottler, C.M., 2018. Vulnerability of Southern Plains agriculture to climate change. Clim. Change 146, 201-218.

[92]

Suleiman, A.A., Ritchie, J.T., 2004. Modifications to the DSSAT vertical drainage model for more accurate soil water dynamics estimation. Soil Sci. 169, 745-757.

[93]

TAWC, 2024. Texas Alliance for Water Conservation. Available at: www.depts.ttu.edu/tawc. (Accessed 20 October 2023).

[94]

Thorp, K.R., DeJonge, K.C., Marek, G.W., Evett, S.R., 2020. Comparison of evapotranspiration methods in the DSSAT Cropping System Model: I. Global sensitivity analysis. Comput. Electron. Agric. 177, 105658.

[95]

Timsina, J., Humphreys, E., 2006. Performance of CERES-Rice and CERES-Wheat models in rice-wheat systems: A review. Agric. Syst. 90, 5-31.

[96]

USCP, 2024. United Sorghum Checkoff Program. In: Growth and development. November 2024).

[97]

USDA-NASS, 2023. The United States Department of Agriculture National Agricultural Statistics Service. In: Texas agricultural statistics annual bulletin. April 2023).

[98]

USDA-NRCS, 2023. The United States Department of Agriculture Natural Resources Conservation Service. In: Soil survey geographic database (SSURGO) for Texas. http://soildatamart.nrcs.usda.gov.

[99]

Volsi, B., Higashi, G.E., Bordin, I., Telles, T.S., 2022. The diversification of species in crop rotation increases the profitability of grain production systems. Sci. Rep. 12, 19849.

[100]

Wallach, D., Makowski, D., Jones, J.W., Brun, F., 2006. Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications. Elsevier, Amsterdam, The Netherlands.

[101]

Wei, Y., Ru, H., Leng, X., He, Z., Ayantobo, O.O., Javed, T., Yao, N., 2022. Better performance of the modified CERES-wheat model in simulating evapotranspiration and wheat growth under water stress conditions. Agriculture 12, 1902.

[102]

White, J.W., Alagarswamy, G., Ottman, M.J., Porter, C.H., Singh, U., Hoogenboom, G., 2015. An overview of CERES-sorghum as implemented in the cropping system model version 4.5. Agron. J. 107, 1987-2002.

[103]

Williams, J.R., Jones, C.A., Dyke, P.T., 1984. A modeling approach to determining the relationships between erosion and soil productivity. Trans. ASABE 27, 129-144.

[104]

Wilson, D.O., Raymer, P.L., 1992. Decomposition of sorghum residue in a double-crop sorghum and wheat system. Soil Biol. Biochem. 24, 789-793.

[105]

Yu, T., Mahe, L., Li, Y., Wei, X., Deng, X., Zhang, D., 2022. Benefits of crop rotation on climate resilience and its prospects in China. Agronomy 12, 436.

AI Summary AI Mindmap
PDF

592

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/