Differences and similarities between japonica and indica rice cultivars in the response of grain quality to free-air CO2 enrichment

Hu Shaowu , Shi Guizhi , Wang Yunxia , Gao Bo , Jing Liquan , Chen Xinyu , Xiong Fei , Zhu Jianguo , Wang Yulong , Huang Jianye , Yang Lianxin

Crop and Environment ›› 2025, Vol. 4 ›› Issue (2) : 73 -82.

PDF
Crop and Environment ›› 2025, Vol. 4 ›› Issue (2) : 73 -82. DOI: 10.1016/j.crope.2025.02.001
Original article

Differences and similarities between japonica and indica rice cultivars in the response of grain quality to free-air CO2 enrichment

Author information +
History +
PDF

Abstract

Selecting high-yielding rice cultivars with superior quality under a changing climate is of particular importance for ensuring future food security. In this field experiment, japonica rice Wuyunjing27 (WYJ27) and indica rice Yangdao6 (YD6) displaying low and high yield enhancement at elevated CO2 (eCO2), respectively, were compared in their grain quality responses to free-air CO2 enrichment (FACE). Grains located at apical primary rachis (superior spikelets, SS) and at proximal secondary rachis (inferior spikelets, IS) were separately investigated in their responses to eCO2 because of the asynchronous grain development in rice panicles. Significant quality declines were found in SS of WYJ27, including increased chalky grains and decreased protein and amino acid concentration; in contrast, YD6 was less affected by eCO2 in these traits. Grain quality of IS of both cultivars was less affected by eCO2, which might be associated with improved grain ripening, as shown by the reduced proportions of immature grains at harvest. Gel consistency and peak, hot, and final viscosities in the starch rapid visco analyzer profile were increased by eCO2 when averaged across SS and IS of the two cultivars, indicating enhanced stickiness of cooked rice. For nutrient compositions, only grain sulfur concentration was reduced by eCO2, while the concentrations of other mineral elements and phytic acid were unchanged when averaged across SS and IS of the two cultivars. These results indicate that indica rice with higher yield increase from eCO2 displayed less quality deterioration, but the underlying mechanisms need further investigation in order to breed rice with both high yield and good quality in eCO2 environments.

Keywords

Free-air CO2 enrichment / Grain quality / Indica and japonica / Rice / Superior and inferior spikelets

Cite this article

Download citation ▾
Hu Shaowu, Shi Guizhi, Wang Yunxia, Gao Bo, Jing Liquan, Chen Xinyu, Xiong Fei, Zhu Jianguo, Wang Yulong, Huang Jianye, Yang Lianxin. Differences and similarities between japonica and indica rice cultivars in the response of grain quality to free-air CO2 enrichment. Crop and Environment, 2025, 4(2): 73-82 DOI:10.1016/j.crope.2025.02.001

登录浏览全文

4963

注册一个新账户 忘记密码

Abbreviations

aCO2 ambient CO2

eCO2 elevated CO2

FACE free-air CO2 enrichment

IS inferior spikelets

RVA rapid visco analyzer

SS superior spikelets

WYJ27 Wuyunjing27

YD6 Yangdao6

Availability of data and materials

Data will be shared upon request by the readers.

Authors' contributions

H.S., W.Y.X., and Y.L.: Writing, reviewing, and editing; H.S., S.G., G.B., and J.L.: Investigation; H.S.: Visualization; H.S., W.Y.X., J.L., and Y.L.: Funding acquisition; H.S.: Formal analysis; S.G.: Methodology; W.Y.X, W.Y.L., H.J., and, Y.L.: Conceptualization; C.X.: Validation; X.F: Supervision; Z.J.: Resources; and Z.J.: Project administration.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 32372216, 32172102, and 31671618), the China Postdoctoral Science Foundation (No. 2023M742963), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.crope.2025.02.001.

References

[1]

Bahuguna, R.N., Chaturvedi, A.K., Pal, M., Viswanathan, C., Jagadish, S.V.K., Pareek, A., 2022. Carbon dioxide responsiveness mitigates rice yield loss under high night temperature. Plant Physiol. 188, 285-300. https://doi.org/10.1093/plphys/kiab470.

[2]

Bao, S.D., 2019. Soil and Agricultural Chemistry Analysis, third ed.ed. China Agriculture Press, Beijing, China (in Chinese).

[3]

Bin Rahman, A.N.M.R., Zhang, J., 2023. Trends in rice research: 2030 and beyond. Food Energy Secur. 12, e390. https://doi.org/10.1002/fes3.390.

[4]

Fabre, D., Dingkuhn, M., Yin, X., Cl, ement-Vidal, A., Roques, S., Soutiras, A., Luquet, D., 2020. Genotypic variation in source and sink traits affects the response of photosynthesis and growth to elevated atmospheric CO2. Plant Cell Environ. 43, 579-593. https://doi.org/10.1111/pce.13693.

[5]

Fitzgerald, M.A., McCouch, S.R., Hall, D.R., 2009. Not just a grain of rice: the quest for quality. Trends Plant Sci. 14, 133-139. https://doi.org/10.1016/j.tplants.2008.12.004.

[6]

Gao, B., Hu, S., Jing, L., Niu, X., Wang, Y., Zhu, J., Wang, Y., Yang, L., 2021a. Alterations in source-sink relations affect rice yield response to elevated CO2: A free-air CO2 enrichment study. Front. Plant Sci. 12, 700159. https://doi.org/10.3389/fpls.2021.700159.

[7]

Gao, B., Hu, S., Jing, L., Wang, Y., Zhu, J., Wang, K., Li, H., Sun, X., Wang, Y., Yang, L., 2021b. Impact of elevated CO2 and reducing the source-sink ratio by partial defoliation on rice grain quality - A 3-year free-air CO2 enrichment study. Front. Plant Sci. 12, 788104. https://doi.org/10.3389/fpls.2021.788104.

[8]

Goufo, P., Ferreira, L.M.M., Carranca, C., Rosa, E.A.S., Trindade, H., 2014. Effect of elevated carbon dioxide concentration on rice quality: Proximate composition, dietary fibers, and free sugars. Cereal Chem. 91, 293-299. https://doi.org/10.1094/ CCHEM-09-13-0180-R.

[9]

Hasegawa, T., Sakai, H., Tokida, T., Usui, Y., Nakamura, H., Wakatsuki, H., Chen, C.P., Ikawa, H., Zhang, G.Y., Nakano, H., Matsushima, M.Y., Hayashi, K., 2019. A highyielding rice cultivar ‘Takanari’ shows no N constraints on CO2 fertilization. Front. Plant Sci. 10, 361. https://doi.org/10.3389/fpls.2019.00361.

[10]

Hu, S., Li, T., Wang, Y., Gao, B., Jing, L., Zhu, J., Wang, Y., Huang, J., Yang, L., 2024. Effects of free air CO2 enrichment (FACE) on grain yield and quality of hybrid rice. Field Crops Res. 306, 109237. https://doi.org/10.1016/j.fcr.2023.109237.

[11]

Hu, S., Tong, K., Chen, W., Wang, Y., Wang, Y., Yang, L., 2022. Response of rice grain quality to elevated atmospheric CO2 concentration: A meta-analysis of 20-year FACE studies. Field Crops Res. 284, 108562. https://doi.org/10.1016/j.fcr.2022.108562.

[12]

Hu, S., Wang, Y., Yang, L., 2021. Response of rice yield traits to elevated atmospheric CO2 concentration and its interaction with cultivar, nitrogen application rate and temperature: A meta-analysis of 20 years FACE studies. Sci. Total Environ. 764, 142797. https://doi.org/10.1016/j.scitotenv.2020.142797.

[13]

Hu, S.W., Zhang, X., Jing, L.Q., Lai, S.K., Wang, Y.X., Zhu, J.G., Wang, Y.L., Yang, L.X., 2019. Effects of elevated CO2 concentration on grain filling capacity and quality of rice grains located at different positions on a panicle. J. Appl. Ecol. 30, 3725-3734 (in Chinese with English abstract). https://doi.org/10.13287/j.1001-9332.201911.022532.

[14]

Iizumi, T., Iseki, K., Ikazaki, K., Sakai, T., Shiogama, H., Imada, Y., Batieno, B.J., 2024. Increasing heavy rainfall events and associated excessive soil water threaten a protein-source legume in dry environments of West Africa. Agric. For. Meteorol. 344, 109783. https://doi.org/10.1016/j.agrformet.2023.109783.

[15]

Jagadish, S.V.K., Murty, M.V.R., Quick, W.P., 2015. Rice responses to rising temperatures - challenges, perspectives and future directions. Plant Cell Environ. 38, 1686-1698. https://doi.org/10.1111/pce.12430.

[16]

Jing, L., Chen, C., Hu, S., Dong, S., Pan, Y., Wang, Y., Lai, S., Wang, Y., Yang, L., 2021. Effects of elevated atmosphere CO2 and temperature on the morphology, structure and thermal properties of starch granules and their relationship to cooked rice quality. Food Hydrocolloids 112, 106360. https://doi.org/10.1016/j.foodhyd.2020.106360.

[17]

Lesk, C., Rowhani, P., Ramankutty, N., 2016. Influence of extreme weather disasters on global crop production. Nature 529, 84-87. https://doi.org/10.1038/nature16467.

[18]

Liang, J., Zhang, J., Cao, X., 2001. Grain sink strength may be related to the poor grain filling of indica-japonica rice (Oryza sativa) hybrids. Physiol. Plant. 112, 470-477. https://doi.org/10.1034/j.1399-3054.2001.1120403.x.

[19]

Myers, S.S., Zanobetti, A., Kloog, P., Leakey, A.D.B., Bloom, A.J., Carlisle, E., Dietterich, L.H., Fitzgerald, G., Hasegawa, T., Holbrook, N.M., Nelson, R.L., Ottman, M.J., Raboy, V., Sakai, H., Sartor, K.A., Schwartz, J., Seneweera, S., Tausz, M., Usui, Y., 2014. Increasing CO2 threatens human nutrition. Nature 510, 139-142. https://doi.org/10.1038/nature13179.

[20]

NOAA, 2024. Trends in atmospheric carbon dioxide, Global Monitoring Laboratory. https://gml.noaa.gov/ccgg/trends/. Accessed: Jun, 2024.

[21]

Rezaei, E.E., Webber, H., Asseng, S., Boote, K., Durand, J.L., Ewert, F., Martre, P., MacCarthy, D.S., 2023. Climate change impacts on crop yields. Nat. Rev. Earth Environ. 4, 831-846. https://doi.org/10.1038/s43017-023-00491-0.

[22]

Shimono, H., Okada, M., Yamakawa, Y., Nakamura, H., Kobayashi, K., Hasegawa, T., 2009. Genotypic variation in rice yield enhancement by elevated CO2 relates to growth before heading, and not to maturity group. J. Exp. Bot. 60, 523-532. https://doi.org/10.1093/jxb/ern288.

[23]

Son, J.S., Do, V.B., Kim, K.O., Cho, M.S., Suwonsichon, T., Valentin, D., 2014. Understanding the effect of culture on food representations using word associations: The case of “rice” and “good rice”. Food Qual. Prefer. 31, 38-48. https://doi.org/10.1016/j.foodqual.2013.07.001.

[24]

Sreenivasulu, N., Butardo, V.M., Misra, G., Cuevas, R.P., Anacleto, R., Kishor, P.B.K., 2015. Designing climate-resilient rice with ideal grain quality suited for high- temperature stress. J. Exp. Bot. 66, 1737-1748. https://doi.org/10.1093/jxb/eru544.

[25]

Sreenivasulu, N., Zhang, C., Tiozon Jr., R.N., Liu, Q., 2022. Post-genomics revolution in the design of premium quality rice in a high-yielding background to meet consumer demands in the 21st century. Plant Commun. 3, 100271. https://doi.org/10.1016/ j.xplc.2021.100271.

[26]

Tao, Y., Cai, C., Wei, W., Yang, X., Wang, D.M., Shen, M., Song, L., Zhu, C.W., 2022. Effects of elevated atmospheric CO2 concentration on root growth of ‘strong’ and ‘weak’ response rice varieties: A FACE study Soils. 54, 763-768 https://doi.org/10.13758/j.cnki.tr.2022.04.014. (in Chinese with English abstract).

[27]

Tian, X., Engel, B.A., Qian, H., Hua, E., Sun, S., Wang, Y., 2021. Will reaching the maximum achievable yield potential meet future global food demand? J. Clean. Prod. 294, 126285. https://doi.org/10.1016/j.jclepro.2021.126285.

[28]

Ujiie, K., Ishimaru, K., Hirotsu, N., Nagasaka, S., Miyakoshi, Y., Ota, M., Tokida, T., Sakai, H., Usui, Y., Ono, K., Kobayashi, K., Nakano, H., Yoshinaga, S., Kashiwagi, T., Magoshi, J., 2019. How elevated CO2 affects our nutrition in rice, and how we can deal with it PLoS One 14, e0212840. https://doi.org/10.1371/journal.pone.0212840.

[29]

Usui, Y., Sakai, H., Tokida, T., Nakamura, H., Nakagawa, H., Hasegawa, T., 2014. Heat- tolerant rice cultivars retain grain appearance quality under free-air CO2 enrichment. Rice 7, 6. https://doi.org/10.1186/s12284-014-0006-5.

[30]

Wang, D., Ziska, L.H., Xu, X., Tao, Y., Zhang, J., Liu, G., Cai, C., Song, L., Zhu, C., 2023a. Adapting rice to rising atmospheric carbon dioxide: A preliminary GMO approach to maintain nutritional integrity. Eur. J. Agron. 144, 126766. https://doi.org/10.1016/ j.eja.2023.126766.

[31]

Wang, K., Xu, F., Yuan, W., Ding, Y., Sun, L., Feng, Z., Liu, X., Xu, W., Zhang, J., Wang, F., 2023b. Elevated CO2 enhances rice root growth under alternate wetting and drying irrigation by involving ABA response: Evidence from the seedling stage. Food Energy Secur. 12, e442. https://doi.org/10.1002/fes3.442.

[32]

Wang, W., Xu, X., Zhu, C., Gu, J., Zhang, W., Liu, G., Zhu, J., 2019. Elevated CO2-induced changes in cytokinin and nitrogen metabolism are associated with different responses in the panicle architecture of two contrasting rice genotypes. Plant Growth Regul. 89, 119-129. https://doi.org/10.1007/s10725-019-00511-4.

[33]

Wang, W., Yan, X., Han, Y., Zhang, W., Zhang, H., Liu, L., 2024. Variability in the responses of rice ecotypes to elevated CO2 based on data from FACE studies in China and Japan: Implications for climate change adaptation. Crop Environ. 3, 171-183. https://doi.org/10.1016/j.crope.2024.06.002.

[34]

Wollburg, P., Markhof, Y., Bentze, T., Ponzini, G., 2024. Substantial impacts of climate shocks in African smallholder agriculture. Nat. Sustain. 7, 1525-1534. https://doi.org/10.1038/s41893-024-01411-w.

[35]

Xu, C.L., Li, J.Y., Xie, H., Zhu, J.G., Fan, G.Z., Cai, Q.S., 2008. Effect of free air CO2 enrichment to rice quality of rice. Chin. Agric. Sci. Bull. 24, 391-397 in Chinese with English abstract).

[36]

Xu, Y., Zhang, L., Ou, S., Wang, R., Wang, Y., Chu, C., Yao, S., 2020. Natural variations of SLG 1 confer high-temperature tolerance in indica rice. Nat. Commun. 11, 5441. https://doi.org/10.1038/s41467-020-19320-9.

[37]

Yang, A., Li, Q., Chen, L., Zhang, W.H., 2020. A rice small GTPase, Rab6a, is involved in the regulation of grain yield and iron nutrition in response to CO2 enrichment. J. Exp. Bot. 71, 5680-5688. https://doi.org/10.1093/jxb/eraa279.

[38]

Yang, J., Yang, K., Lv, C., Wang, Y., 2022. Effects of moderate water deficit on the accumulation and translocation of stem non-structural carbohydrates, yield and yield components in a sink-limited rice variety under elevated CO2 concentration. J. Plant Growth Regul. 42, 4350-4359. https://doi.org/10.1007/s00344-022-10897-7.

[39]

Yang, J., Zhang, J., 2010. Grain-filling problem in ‘super’ rice. J. Exp. Bot. 61, 1-5. https://doi.org/10.1093/jxb/erp348.

[40]

Yang, L., Wang, Y., Dong, G., Gu, H., Huang, J., Zhu, J., Yang, H., Liu, G., Han, Y., 2007. The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Res. 102, 128-140. https://doi.org/10.1016/ j.fcr.2007.03.006.

[41]

Yang, L., Wang, Y., Kobayashi, K., Zhu, J., Huang, J., Yang, H., Wang, Y., Dong, G., Liu, G., Han, Y., Shan, Y., Hu, J., Zhou, J., 2008. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on growth, morphology and physiology of rice root at three levels of nitrogen fertilization. Glob. Change Biol. 14, 1844-1853. https://doi.org/10.1111/j.1365-2486.2008.01624.x.

[42]

Zhang, G., Sakai, H., Tokida, T., Usui, Y., Zhu, C., Nakamura, H., Yoshimoto, M., Fukuoka, M., Kobayashi, K., Hasegawa, T., 2013. The effects of free-air CO2 enrichment (FACE) on carbon and nitrogen accumulation in grains of rice (Oryza sativa L.). J. Exp. Bot. 64, 3179-3188. https://doi.org/10.1093/jxb/ert154.

[43]

Zhang, G., Sakai, H., Usui, Y., Tokida, T., Nakamura, H., Zhu, C., Fukuoka, M., Kobayashi, K., Hasegawa, T., 2015. Grain growth of different rice cultivars under elevated CO2 concentrations affects yield and quality. Field Crops Res. 179, 72-80. https://doi.org/10.1016/j.fcr.2015.04.006.

[44]

Zhang, G., Ujiie, K., Yoshimoto, M., Sakai, H., Tokida, T., Usui, Y., Wakatsuki, H., Arai, M., Ikawa, H., Nakamura, H., Hasegawa, T., 2022a. Daytime warming during early grain filling offsets the CO2 fertilization effect in rice. Environ. Res. Lett. 17, 114051. https://doi.org/10.1088/1748-9326/aca038.

[45]

Zhang, H., Zhang, J., Yang, J., 2023. Improving nitrogen use efficiency of rice crop through an optimized root system and agronomic practices. Crop Environ. 2, 192-201. https://doi.org/10.1016/j.crope.2023.10.001.

[46]

Zhang, J., Li, Y., Yu, Z., Adams, J., Tang, C., Wang, G., Liu, X., Liu, J., Franks, A., Liu, J., Zhang, S., 2022b. Elevated atmospheric CO2 and warming enhance the acquisition of soil-derived nitrogen rather than urea fertilizer by rice cultivars. Agric. For. Meteorol. 324, 109117. https://doi.org/10.1016/j.agrformet.2022.109117.

[47]

Zhou, X., Zhou, J., Wang, Y., Peng, B., Zhu, J., Yang, L., Wang, Y., 2015. Elevated tropospheric ozone increased grain protein and amino acid content of a hybrid rice without manipulation by planting density. J. Sci. Food Agric. 95, 72-78. https://doi.org/10.1002/jsfa.6684.

[48]

Zhu, C., Kobayashi, K., Loladze, I., Zhu, J., Jiang, Q., Xu, X., Liu, G., Seneweera, S., Ebi, K.L., Drewnowski, A., Fukagawa, N.K., Ziska, L.H., 2018. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci. Adv. 4, eaaq1012. https://doi.org/10.1126/sciadv.aaq1012.

[49]

Zhu, C., Xu, X., Wang, D., Zhu, J., Liu, G., 2015. An indica rice genotype showed a similar yield enhancement to that of hybrid rice under free air carbon dioxide enrichment. Sci. Rep. 5, 12719. https://doi.org/10.1038/srep12719.

[50]

Ziska, L.H., 2022. Rising carbon dioxide and global nutrition: Evidence and action needed. Plants 11, 1000. https://doi.org/10.3390/plants11071000.

AI Summary AI Mindmap
PDF

451

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/