Adaptation of cuticle metabolism to abiotic stress in plants

Zhao Peimin , Li Qianqian , Lei Yang , Zou Jitao , Li Qiang

Crop and Environment ›› 2025, Vol. 4 ›› Issue (1) : 38 -44.

PDF
Crop and Environment ›› 2025, Vol. 4 ›› Issue (1) : 38 -44. DOI: 10.1016/j.crope.2025.01.001
Research article

Adaptation of cuticle metabolism to abiotic stress in plants

Author information +
History +
PDF

Abstract

The cuticle, primarily composed of waxes and cutin polyesters, is a hydrophobic layer that covers the surfaces of plant tissues, evolving as physiological and biochemical adaptations to diverse environments. This layer acts as a diffusion barrier, preventing water loss and protecting plants against various biotic and abiotic stresses. Cuticular lipids, the major constituents of the cuticle, are complex mixtures of fatty acids and their derivatives. The biosynthesis, secretion, and assembly of these lipophilic metabolites are governed by multiple genes and intricately coordinated molecular networks that respond to developmental signals and various environmental stimuli. Advances in plant genetics and analytical techniques have greatly expanded our understanding of the biochemical composition and diverse functions of plant cuticles. This review provides an overview of the cuticle metabolism, with an emphasis on its role in abiotic stress adaptation in crops.

Keywords

Abiotic stress / Cuticle / Cutin / Fatty acids / Lipids / Wax

Cite this article

Download citation ▾
Zhao Peimin, Li Qianqian, Lei Yang, Zou Jitao, Li Qiang. Adaptation of cuticle metabolism to abiotic stress in plants. Crop and Environment, 2025, 4(1): 38-44 DOI:10.1016/j.crope.2025.01.001

登录浏览全文

4963

注册一个新账户 忘记密码

Abbreviations

ABC ATP binding cassette

ABCG transporters of the G-clade

CER ECERIFERUM

CoA coenzyme A

ECR trans-2-enoyl-CoA reductase

ELO elongase

ER endoplasmic reticulum

FAE fatty acid elongation complex

GPAT glycerol-3-phosphate acyltransferase

HCD β-hydroxyacyl-CoA dehydratase

KCR β-ketoacyl-CoA reductase

KCS β-ketoacyl-CoA synthase

LACS long-chain acyl-coenzyme A synthetase

VLCFA very long-chain fatty acids

Availability of data and materials

Not applicable.

Authors' contributions

Q.L.: Project administration, Conceptualization; P.Z.: Manuscript writing; J.Z., and Q.L.: Manuscript writing, reviewing, and editing; P.Z.: Data analysis; Y.L.: Software; and P.Z. and Q.Q.L.: Data curation.

Declaration of competing interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the Biological Breeding-National Science and Technology Major Project (2023ZD0407105) and the Fundamental Research Funds for the Central Universities (2662020ZKPY005).

References

[1]

Abdullah, H.M., Rodriguez, J., Salacup, J.M., Castan-eda, I.S., Schnell, D.J., Pareek, A., Dhankher, O.P., 2021. Increased cuticle waxes by overexpression of WSD 1 improves osmotic stress tolerance in Arabidopsis thaliana and Camelina sativa. Int. J. Mol. Sci. 22, 5173.

[2]

Amid, A., Lytovchenko, A., Fernie, A.R., Warren, G., Thorlby, G.J., 2012. The sensitive to freezing 3 mutation of Arabidopsis thaliana is a cold-sensitive allele of homomeric acetyl-CoA carboxylase that results in cold-induced cuticle deficiencies. J. Exp. Bot. 63, 5289-5299.

[3]

Ayaz, A., Huang, H., Zheng, M., Zaman, W., Li, D., Saqib, S., Zhao, H., S., 2021. Molecular cloning and functional analysis of GmLACS2- 3 reveals its involvement in cutin and suberin biosynthesis along with abiotic stress tolerance. Int. J. Mol. Sci. 22, 9175.

[4]

Bach, L., Michaelson, L.V., Haslam, R., Bellec, Y., Gissot, L., Marion, J., Da Costa, M., Boutin, J.P., Miquel, M., Tellier, F., Domergue, F., Markham, J.E., Beaudoin, F., Napier, J.A., Faure, J.D., 2008. The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO 2 is essential and limiting for plant development. Proc. Natl. Acad. Sci. U. S. A. 105, 14727-14731.

[5]

Beaudoin, F., Wu, X., Li, F., Haslam, R.P., Markham, J.E., Zheng, H., Napier, J.A., Kunst, L., 2009. Functional characterization of the Arabidopsis β-ketoacyl-coenzyme A reductase candidates of the fatty acid elongase. Plant Physiol. 150, 1174-1191.

[6]

Beisson, F., Li-Beisson, Y., Pollard, M., 2012. Solving the puzzles of cutin and suberin polymer biosynthesis. Curr. Opin. Plant Biol. 15, 329-337.

[7]

Bengtson, C., Larsson, S., Liljenberg, C., 1978. Effects of water stress on cuticular transpiration rate and amount and composition of epicuticular wax in seedlings of six oat varieties. Physiol. Plant. 44, 319-324.

[8]

Bernard, A., Domergue, F., Pascal, S., Jetter, R., Renne, C., Faure, J.D., Haslam, R.P., Napier, J.A., Lessire, R., Joubès, J., 2012. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell 24, 3106-3118.

[9]

Bird, S.M., Gray, J.E., 2003. Signals from the cuticle affect epidermal cell differentiation. New Phytol. 157, 9-23.

[10]

Brennan, E.B., Weinbaum, S.A., 2001. Effect of epicuticular wax on adhesion of psyllids to glaucous juvenile and glossy adult leaves of Eucalyptus globulus Labillardière. Aust. J. Entomol. 40, 270-277.

[11]

Bush, R.T., McInerney, F.A., 2013. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochim. Cosmochim. Acta 117, 161-179.

[12]

Busta, L., Jetter, R., 2017. Structure and biosynthesis of branched wax compounds on wild type and wax biosynthesis mutants of Arabidopsis thaliana. Plant Cell Physiol. 58, 1059-1074.

[13]

Cameron, K.D., Teece, M.A., Smart, L.B., 2006. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol. 140, 176-183.

[14]

Chang, J., Li, X., Shen, J., Hu, J., Wu, L., Zhang, X., Li, J., 2024. Defects in the cell wall and its deposition caused by loss-of-function of three RLKs alter root hydrotropism in Arabidopsis thaliana. Nat. Commun. 15, 2648.

[15]

Chen, K., Li, G., Bressan, R.A., Song, C., Zhu, J., Zhao, Y., 2020. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 62, 25-54.

[16]

Chen, N., Song, B., Tang, S., He, J., Zhou, Y., Feng, J., Shi, S., Xu, X., 2018. Overexpression of the ABC transporter gene TsABCG 11 increases cuticle lipids and abiotic stress tolerance in Arabidopsis. Plant Biotechnol. Rep. 12, 303-313.

[17]

Chen, X., Goodwin, S.M., Boroff, V.L., Liu, X., Jenks, M.A., 2003. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell 15, 1170-1185.

[18]

Chen, X., Truksa, M., Snyder, C.L., El-Mezawy, A., Shah, S., Weselake, R.J., 2010. Three homologous genes encoding sn-glycerol-3-phosphate acyltransferase 4 exhibit different expression patterns and functional divergence in Brassica napus. Plant Physiol. 155, 851-865.

[19]

De Bellis, D., Kalmbach, L., Marhavy, P., Daraspe, J., Geldner, N., Barberon, M., 2022. Extracellular vesiculo-tubular structures associated with suberin deposition in plant cell walls. Nat. Commun. 13, 1489.

[20]

Debono, A., Yeats, T.H., Rose, J.K.C., Bird, D., Jetter, R., Kunst, L., Samuels, L., 2009. Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell 21, 1230-1238.

[21]

Elejalde-Palmett, C., Martinez, S.S.I., Garroum, I., Charrier, L., De Bellis, D., Mucciolo, A., Guerault, A., Liu, J., Zeisler-Diehl, V., Aharoni, A., Schreiber, L., Bakan, B., Clausen, M.H., Geisler, M., Nawrath, C., 2021. ABCG transporters export cutin precursors for the formation of the plant cuticle. Curr. Biol. 31, 2111-2123.

[22]

Fich, E.A., Segerson, N.A., Rose, J.K.C., 2016. The plant polyester cutin: biosynthesis, structure, and biological roles. Annu. Rev. Plant Biol. 67, 207-233.

[23]

Gan, L., Wang, X., Cheng, Z., Liu, L., Wang, J., Zhang, Z., Ren, Y., Lei, C., Zhao, Z., Zhu, S., Lin, Q., Wu, F., Guo, X., Wang, J., Zhang, X., Wan, J., 2016. Wax crystal-sparse leaf 3 encoding a β-ketoacyl-CoA reductase is involved in cuticular wax biosynthesis in rice. Plant Cell Rep. 35, 1687-1698.

[24]

Gan, L., Zhu, S., Zhao, Z., Liu, L., Wang, X., Zhang, Z., Zhang, X., Wang, J., Wang, J., Guo, X., Wan, J., 2017. Wax Crystal-Sparse Leaf 4, encoding a β-ketoacyl-coenzyme A synthase 6, is involved in rice cuticular wax accumulation. Plant Cell Rep. 36, 1655-1666.

[25]

González, A., Ayerbe, L., 2010. Effect of terminal water stress on leaf epicuticular wax load, residual transpiration and grain yield in barley. Euphytica 172, 341-349.

[26]

Gonzalez, R., Paul, N.D., Percy, K., Ambrose, M., McLaughlin, C.K., Barnes, J.D., Areses, M., Wellburn, A.R., 1996. Responses to ultraviolet-B radiation (280-315 nm) of pea (Pisum sativum) lines differing in leaf surface wax. Physiol. Plant. 98, 852-860.

[27]

Greer, S., Wen, M., Bird, D., Wu, X., Samuels, L., Kunst, L., Jetter, R., 2007. The cytochrome P 450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. Plant Physiol. 145, 653-667.

[28]

Haslam, T.M., Haslam, R., Thoraval, D., Pascal, S., Delude, C., Domergue, F., Fernández, A.M., Beaudoin, F., Napier, J.A., Kunst, L., Joubès, J., 2015. ECERIFERUM2-LIKE proteins have unique biochemical and physiological functions in very-long-chain fatty acid elongation. Plant Physiol. 167, 682-692.

[29]

He, J., Li, C., Hu, N., Zhu, Y., He, Z., Sun, Y., Wang, Z., Wang, Y., 2022. ECERIFERUM1-6 A is required for the synthesis of cuticular wax alkanes and promotes drought tolerance in wheat. Plant Physiol. 190, 1640-1657.

[30]

Hegebarth, D., Buschhaus, C., Joubès, J., Thoraval, D., Bird, D., Jetter, R., 2017. Arabidopsis ketoacyl-CoA synthase 16 (KCS16) forms C36/C38 acyl precursors for leaf trichome and pavement surface wax. Plant Cell Environ. 40, 1761-1776.

[31]

Hen-Avivi, S., Savin, O., Racovita, R.C., Lee, W.S., Adamski, N.M., Malitsky, S., Almekias- Siegl, E., Levy, M., Vautrin, S., Bergès, H., Friedlander, G., Kartvelishvily, E., Ben-Zvi, G., Alkan, N., Uauy, C., Kanyuka, K., Jetter, R., Distelfeld, A., Aharoni, A., 2016.

[32]

A metabolic gene cluster in the wheat W1 and the barley Cer-cqu loci determines β-diketone biosynthesis and glaucousness. Plant Cell 28,1440-1460.

[33]

Huang, D., Feurtado, J.A., Smith, M.A., Flatman, L.K., Koh, C., Cutler, A.J., 2017. Long noncoding miRNA gene represses wheat β-diketone waxes. Proc. Natl. Acad. Sci. U. S. A. 114, E3149-E3158.

[34]

Huang, H., Ayaz, A., Zheng, M., Yang, X., Zaman, W., Zhao, H., S., 2022. Arabidopsis KCS5 and KCS 6 play redundant roles in wax synthesis. Int. J. Mol. Sci. 23, 4450.

[35]

Ichino, T., Yazaki, K., 2022. Modes of secretion of plant lipophilic metabolites via ABCG transporter-dependent transport and vesicle-mediated trafficking. Curr. Opin. Plant Biol. 66, 102184.

[36]

James, D.W., Lim, E., Keller, J., Plooy, I., Ralston, E., Dooner, H.K., 1995. Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator. Plant Cell 7, 309-319.

[37]

Jetter, R., Sch€affer, S., 2001. Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiol. 126, 1725-1737.

[38]

Jian, L., Kang, K., Choi, Y., Suh, M.C., Paek, N.C., 2022. Mutation of OsMYB 60 reduces rice resilience to drought stress by attenuating cuticular wax biosynthesis. Plant J. 112, 339-351.

[39]

Jiang, H., Qi, C.H., Gao, H.N., Feng, Z.Q., Wu, Y.T., Xu, X.X., Cui, J.Y., Wang, X.F., Lv, Y.H., Gao, W.S., Jiang, Y.M., You, C.X., Li, Y.Y., 2024. MdBT2 regulates nitrogen- mediated cuticular wax biosynthesis via a MdMYB106-MdCER2L1 signaling pathway in apple. Nat. Plants 10, 131-144.

[40]

Kan, Y., Mu, X.R., Zhang, H., Gao, J., Shan, J.X., Ye, W.W., Lin, H.X., 2021. TT 2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis. Nat. Plants 8, 53-67.

[41]

Kim, H., Lee, S.B., Kim, H.J., Min, M.K., Hwang, I., Suh, M.C., 2012. Characterization of glycosylphosphatidylinositol-anchored lipid transfer protein 2 (LTPG2) and overlapping function between LTPG/LTPG1 and LTPG2 in cuticular wax export or accumulation in Arabidopsis thaliana. Plant Cell Physiol. 53, 1391-1403.

[42]

Kim, J., Jung, J.H., Lee, S.B., Go, Y.S., Kim, H.J., Cahoon, R., Markham, J.E., Cahoon, E.B., Suh, M.C., 2013. Arabidopsis 3-ketoacyl-coenzyme a synthase 9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids. Plant Physiol. 162, 567-580.

[43]

Kim, K.S., Park, S.H., Jenks, M.A., 2007. Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. J. Plant Physiol. 164, 1134-1143.

[44]

Kim, R.J., Han, S., Kim, H.J., Hur, J.H., Suh, M.C., 2024. Tetracosanoic acids produced by 3-ketoacyl-CoA synthase 17 are required for synthesizing seed coat suberin in Arabidopsis. J. Exp. Bot. 75, 1767-1780.

[45]

Kosma, D.K., Bourdenx, B., Bernard, A., Parsons, E.P., S., Joubès, J., Jenks, M.A., 2009. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol. 151, 1918-1929.

[46]

Kunst, L., Samuels, A.L., 2003. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 42, 51-80.

[47]

Kuruparan, A., Gao, P., Soolanayakanahally, R., Kumar, S., Gonzales-Vigil, E., 2024.

[48]

β-diketone accumulation in response to drought stress is weakened in modern bread wheat varieties ( Triticum, aestivum L.). Front. Plant Sci. 15, 1401135.

[49]

Larsson, S., Svenningsson, M., 1986. Cuticular transpiration and epicuticular lipids of primary leaves of barley (Hordeum vulgare). Physiol. Plant. 68, 13-19.

[50]

Lee, S.B., Jung, S.J., Go, Y.S., Kim, H.U., Kim, J.K., Cho, H.J., Park, O.K., Suh, M.C., 2009. Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. Plant J. 60, 462-475.

[51]

Lee, S.B., Kim, H.U., Suh, M.C., 2016. MYB94 and MYB 96 additively activate cuticular wax biosynthesis in Arabidopsis. Plant Cell Physiol. 57, 2300-2311.

[52]

Lee, S.B., Suh, M.C., 2015. Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Rep. 34, 557-572.

[53]

Liang, M., Zhang, F., Xu, J., Wang, X., Wu, R., Xue, Z., 2022. A conserved mechanism affecting hydride shifting and deprotonation in the synthesis of hopane triterpenes as compositions of wax in oat. Proc. Natl. Acad. Sci. U. S. A. 119, e2118709119.

[54]

Liu, J., Zhu, L., Wang, B., Wang, H., Khan, I., Zhang, S., Wen, J., Ma, C., Dai, C., Tu, J., Shen, J., Yi, B., Fu, T., 2021. BnA1.CER4 and BnC1.CER4 are redundantly involved in branched primary alcohols in the cuticle wax of Brassica napus. Theor. Appl. Genet. 134, 3051-3067.

[55]

Liu, L., Jose, S.B., Campoli, C., Bayer, M.M., Sánchez-Diaz, M.A., McAllister, T., Zhou, Y., Eskan, M., Milne, L., Schreiber, M., Batstone, T., Bull, I.D., Ramsay, L., von Wettstein- Knowles, P., Waugh, R., Hetherington, A.M., McKim, S.M., 2022. Conserved signalling components coordinate epidermal patterning and cuticle deposition in barley. Nat. Commun. 13, 6050.

[56]

Liu, X., Bourgault, R., Galli, M., Strable, J., Chen, Z., Feng, F., Dong, J., Molina, I., Gallavotti, A., 2020. The FUSED LEAVES1-ADHERENT 1 regulatory module is required for maize cuticle development and organ separation. New Phytol. 229, 388-402.

[57]

Li, H., Guo, Y., Cui, Q., Zhang, Z., Yan, X., Ahammed, G.J., Yang, X., Yang, J., Wei, C., Zhang, X., 2020. Alkanes (C29 and C31)-mediated intracuticular wax accumulation contributes to melatonin- and ABA-induced drought tolerance in watermelon. J. Plant Growth Regul. 39, 1441-1450.

[58]

Li, H.J., Bai, W.P., Liu, L.B., Liu, H.S., Wei, L., Garant, T.M., Kalinger, R.S., Deng, Y.X., Wang, G.N., Bao, A.K., Ma, Q., Rowland, O., Wang, S.M., 2023. Massive increases in C 31 alkane on Zygophyllum xanthoxylum leaves contribute to its excellent abiotic stress tolerance. Ann. Bot. 131, 723-736.

[59]

Li, L., Du, Y., He, C., Dietrich, C.R., Li, J., Ma, X., Wang, R., Liu, Q., Liu, S., Wang, G., Schnable, P.S., Zheng, J., 2019. Maize glossy 6 is involved in cuticular wax deposition and drought tolerance. J. Exp. Bot. 70, 3089-3099.

[60]

Li, Y.H., Beisson, F., Koo, A.J.K., Molina, I., Pollard, M., Ohlrogge, J., 2007. Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proc. Natl. Acad. Sci. U. S. A. 104, 18339-18344.

[61]

Long, L.M., Patel, H.P., Cory, W.C., Stapleton, A.E., 2003. The maize epicuticular wax layer provides UV protection. Funct. Plant Biol. 30, 75-81.

[62]

S., Song, T., Kosma, D.K., Parsons, E.P., Rowland, O., Jenks, M.A., 2009. Arabidopsis CER8 encodes long-chain acyl-CoA synthetase 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. Plant J. 59, 553-564.

[63]

Luo, N., Wang, Y., Liu, Y., Wang, Y., Guo, Y., Chen, C., Gan, Q., Song, Y., Fan, Y., Jin, S., Ni, Y., 2024. 3-ketoacyl-CoA synthase 19 contributes to the biosynthesis of seed lipids and cuticular wax in Arabidopsis and abiotic stress tolerance. Plant Cell Environ. 47, 4599-4614.

[64]

Luzarowska, U., Ruß A.K., Joubès, J., Batsale, M., Szyman'ski, J., Thirumalaikumar, V.P., Luzarowski, M., Wu, S., Zhu, F., Endres, N., Khedhayir, S., Schumacher, J., Jasinska, W., Xu, K., Correa Cordoba, S.M., Weil, S., Skirycz, A., Fernie, A.R., Li- Beisson, Y., Fusari, C.M., Brotman, Y., 2023. Hello darkness, my old friend: 3-ketoacyl-coenzyme a synthase 4 is a branch point in the regulation of triacylglycerol synthesis in Arabidopsis thaliana. Plant Cell 35, 1984-2005.

[65]

McFarlane, H.E., Shin, J.J.H., Bird, D.A., Samuels, A.L., 2010. Arabidopsis ABCG transporters, which are required for export of diverse cuticular lipids, dimerize in different combinations. Plant Cell 22, 3066-3075.

[66]

Mindrebo, J.T., Patel, A., Kim, W.E., Dayis, T.D., Chen, A., Bartholow, T.G., La Clair, J.J., McCammon, J.A., Noel, J.P., Burkart, M.D., 2020. Gating mechanism of elongating β-ketoacyl-ACP synthases. Nat. Commun. 11, 1727.

[67]

Monneveux, P., Reynolds, M.P., González-Santoyo, H., Pen-a, R.J., Mayr, L., Zapata, F., 2004. Relationships between grain yield, flag leaf morphology, carbon isotope discrimination and ash content in irrigated wheat. J. Agron. Crop Sci. 190, 395-401.

[68]

Nguyen, V.N.T., Lee, S.B., Suh, M.C., An, G., Jung, K.H., 2018. OsABCG 9 is an important ABC transporter of cuticular wax deposition in rice. Front. Plant Sci. 9, 960.

[69]

Pan, Z., Liu, M., Zhao, H., Tan, Z., Liang, K., Sun, Q., Gong, D., He, H., Zhou, W., Qiu, F., 2020. ZmSRL 5 is involved in drought tolerance by maintaining cuticular wax structure in maize. J. Integr. Plant Biol. 62, 1895-1909.

[70]

Panikashvili, D., Savaldi-Goldstein, S., Mandel, T., Yifhar, T., Franke, R.B., Ho€fer, R., Schreiber, L., Chory, J., Aharoni, A., 2007. The Arabidopsis DESPERADO/ AtWBC 11 transporter is required for cutin and wax secretion. Plant Physiol. 145, 1345-1360.

[71]

Panikashvili, D., Shi, J.X., Schreiber, L., Aharoni, A., 2009. The Arabidopsis DCR encoding a soluble BAHD acyltransferase is required for cutin polyester formation and seed hydration properties. Plant Physiol. 151, 1773-1789.

[72]

Patwari, P., Salewski, V., Gutbrod, K., Kreszies, T., Dresen-Scholz, B., Peisker, H., Steiner, U., Meyer, A.J., Schreiber, L., Do€rmann, P., 2019. Surface wax esters contribute to drought tolerance in Arabidopsis. Plant J. 98, 727-744.

[73]

Philippe, G., Sørensen, I., Jiao, C., Sun, X.P., Fei, Z.J., Domozych, D.S., Rose, J.K.C., 2020. Cutin and suberin: assembly and origins of specialized lipidic cell wall scaffolds. Curr. Opin. Plant Biol. 55, 11-20.

[74]

Quist, T.M., Sokolchik, I., Shi, H., Joly, R.J., Bressan, R.A., Maggio, A., Narsimhan, M., Li, X., 2009. HOS3, an ELO-like gene, inhibits effects of ABA and implicates a S-1-P/ ceramide control system for abiotic stress responses in Arabidopsis thaliana. Mol. Plant 2, 138-151.

[75]

Razeq, F.M., Kosma, D.K., França, D., Rowland, O., Molina, I., 2021. Extracellular lipids of Camelina sativa: Characterization of cutin and suberin reveals typical polyester monomers and unusual dicarboxylic fatty acids. Phytochemistry 184, 112665.

[76]

Rich, B.B., Pokroy, B., 2018. A study on the wetting properties of broccoli leaf surfaces and their time dependent self-healing after mechanical damage. Soft Matter 14, 7782-7792.

[77]

Rowland, O., Lee, R., Franke, R., Schreiber, L., Kunst, L., 2007. The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1. FEBS Lett. 581, 3538-3544.

[78]

Rowland, O., Zheng, H., Hepworth, S.R., Lam, P., Jetter, R., Kunst, L., 2006. CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol. 142, 866-877.

[79]

Sánchez, F.J., Manzanares, M., de Andr'es, E.F., Tenorio, J.L., Ayerbe, L., 2001. Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions. Influence on harvest index and canopy temperature. Eur. J. Agron. 15, 57-70.

[80]

Serra, O., Geldner, N., 2022. The making of suberin. New Phytol. 235, 848-866.

[81]

Shao, S., Meyer, C.J., Ma, F., Peterson, C.A., Bernards, M.A., 2007. The outermost cuticle of soybean seeds: chemical composition and function during imbibition. J. Exp. Bot. 58, 1071-1082.

[82]

Shepherd, T., Wynne Griffiths, D., 2006. The effects of stress on plant cuticular waxes. New Phytol. 171, 469-499.

[83]

Steinmuller, D., Tevini, M., 1985. Action of ultraviolet radiation (UV-B) upon cuticular waxes in some crop plants. Planta 164, 557-564.

[84]

Su, Y., Feng, T., Liu, C.B., Huang, H., Wang, Y.L., Fu, X., Han, M.L., Zhang, X., Huang, X., Wu, J.C., Song, T., Shen, H., Yang, X., Xu, L., S., Chao, D.Y., 2023. The evolutionary innovation of root suberin lamellae contributed to the rise of seed plants. Nat. Plants 9, 1968-1977.

[85]

Sui, N., Tian, S., Wang, W., Wang, M., Fan, H., 2017. Overexpression of glycerol-3- phosphate acyltransferase from Suaeda salsa improves salt tolerance in Arabidopsis. Front. Plant Sci. 8, 1337.

[86]

Tang, J., Yang, X., Xiao, C., Li, J., Chen, Y., Li, R., Li, S., S., Hu, H., 2020. GDSL lipase occluded stomatal pore 1 is required for wax biosynthesis and stomatal cuticular ledge formation. New Phytol. 228, 1880-1896.

[87]

Todd, J., Post-Beittenmiller, D., Jaworski, J.G., 1999. KCS 1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J. 17, 119-130.

[88]

Tomasi, P., Wang, H., Lohrey, G.T., Park, S., Dyer, J.M., Jenks, M.A., Abdel-Haleem, H., 2017. Characterization of leaf cuticular waxes and cutin monomers of Camelina sativa and closely-related Camelina species. Ind. Crops Prod. 98, 130-138.

[89]

van de, Kerkhof, G.T.,Schertel, L., Poon, R.N., Jacucci, G., Glover, B.J., Vignolini, S., 2020. Disordered wax platelets on Tradescantia pallida leaves create golden shine. Faraday Discuss. 223, 207-215.

[90]

Vogg, G., Fischer, S., Leide, J., Emmanuel, E., Jetter, R., Levy, A.A., Riederer, M., 2004. Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid β-ketoacyl-CoA synthase. J. Exp. Bot. 55, 1401-1410.

[91]

von Wettstein-Knowles, P., 2016. Plant waxes. The Encyclopedia of Life Sciences (eLS), John Wiley and Sons, Ltd., Chichester, England, pp. 1-13.

[92]

Wang, A., Guo, J., Wang, S., Zhang, Y., Lu, F., Duan, J., Liu, Z., Ji, W., 2022a. BoPEP4, a C-terminally encoded plant elicitor peptide from broccoli, plays a role in salinity stress tolerance. Int. J. Mol. Sci. 23, 3090.

[93]

Wang, D., Ni, Y., Liao, L., Xiao, Y., Guo, Y., 2021. Poa pratensis ECERIFERUM1 (PpCER1) is involved in wax alkane biosynthesis and plant drought tolerance. Plant Physiol. Biochem. 159, 312-321.

[94]

Wang, W., Chi, M., Liu, S., Zhang, Y., Song, J., Xia, G., Liu, S., 2024. TaGPAT 6 enhances salt tolerance in wheat by synthesizing cutin and suberin monomers to form a diffusion barrier. J. Integr. Plant Biol. 00, 1-18.

[95]

Wang, Y., Yang, X., Chen, Z., Zhang, J., Si, K., Xu, R., He, Y., Zhu, F., Cheng, Y., 2022b. Function and transcriptional regulation of CsKCS 20 in the elongation of very-long-chain fatty acids and wax biosynthesis in Citrus sinensis flavedo. Hortic. Res. 9, uhab027.

[96]

Wen, X., Geng, F., Cheng, Y., Wang, J., 2021. Ectopic expression of CsMYB 30 from Citrus sinensis enhances salt and drought tolerance by regulating wax synthesis in Arabidopsis thaliana. Plant Physiol. Biochem. 166, 777-788.

[97]

Wu, H., Liu, L., Chen, Y., Liu, T., Jiang, Q., Wei, Z., Li, C., Wang, Z., 2022. Tomato SlCER1- 1 catalyzes the synthesis of wax alkanes which increases the drought tolerance and fruit storability. Hortic. Res. 9, uhac004.

[98]

Wu, P., Li, S., Yu, X., Guo, S., Gao, L., 2024. Identification of long-chain acyl-CoA synthetase gene family reveals that SlLACS 1 is essential for cuticular wax biosynthesis in tomato. Int. J. Biol. Macromol. 277, 134438.

[99]

Xiao, F., Goodwin, S.M., Xiao, Y., Sun, Z., Baker, D., Tang, X., Jenks, M.A., Zhou, J.M., 2004. Arabidopsis CYP86A 2 represses Pseudomonas syringae type III genes and is required for cuticle development. EMBO J. 23, 2903-2913.

[100]

Xu, L., Hao, J., Lv, M., Liu, P., Ge, Q., Zhang, S., Yang, J., Niu, H., Wang, Y., Xue, Y., Lu, X., Tang, J., Zheng, J., Gou, M., 2024. A genome-wide association study identifies genes associated with cuticular wax metabolism in maize. Plant Physiol. 194, 2616-2630.

[101]

Xue, D., Zhang, X., Lu, X., Chen, G., Chen, Z.H., 2017. Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front. Plant Sci. 8, 621.

[102]

Yadav, V., Molina, I., Ranathunge, K., Castillo, I.Q., Rothstein, S.J., Reed, J.W., 2014. ABCG transporters are required for suberin and pollen wall extracellular barriers in Arabidopsis. Plant Cell 26, 3569-3588.

[103]

Yamamoto, M., Nishikawa, N., Mayama, H., Nonomura, Y., Yokojima, S., Nakamura, S., Uchida, K., 2015. Theoretical explanation of the lotus effect: superhydrophobic property changes by removal of nanostructures from the surface of a lotus leaf. Langmuir 31, 7355-7363.

[104]

Yang, H., Mei, W., Wan, H., Xu, R., Cheng, Y., 2021. Comprehensive analysis of KCS gene family in Citrinae reveals the involvement of CsKCS2 and CsKCS 11 in fruit cuticular wax synthesis at ripening. Plant Sci. 310, 110972.

[105]

Yang, X., Feng, T., Li, S., Zhao, H., Zhao, S., Ma, C., Jenks, M.A., S., 2020. CER16 inhibits post-transcriptional gene silencing of CER3 to regulate alkane biosynthesis. Plant Physiol. 182, 1211-1221.

[106]

Yang, Y., Shi, J., Chen, L., Xiao, W., Yu, J., 2022. ZmEREB46, a maize ortholog of Arabidopsis WAX INDUCER1/SHINE1, is involved in the biosynthesis of leaf epicuticular very-long-chain waxes and drought tolerance. Plant Sci. 321, 111256.

[107]

Yang, Z., Zhang, T., Lang, T., Li, G., Chen, G., Nevo, E., 2013. Transcriptome comparative profiling of barley eibi 1 mutant reveals pleiotropic effects of HvABCG31 gene on cuticle biogenesis and stress responsive pathways. Int. J. Mol. Sci. 14, 20478-20491.

[108]

Yeats, T.H., Rose, J.K.C., 2013. The formation and function of plant cuticles. Plant Physiol. 163, 5-20.

[109]

Zhang, C.L., Hu, X., Zhang, Y.L., Liu, Y., Wang, G.L., You, C.X., Li, Y.Y., Hao, Y.J., 2020a. An apple long-chain acyl-CoA synthetase 2 gene enhances plant resistance to abiotic stress by regulating the accumulation of cuticular wax. Tree Physiol. 40, 1450-1465.

[110]

Zhang, C.L., Zhang, Y.L., Hu, X., Xiao, X., Wang, G.L., You, C.X., Li, Y.Y., Hao, Y.J., 2020b. An apple long-chain acyl-CoA synthetase, MdLACS4, induces early flowering and enhances abiotic stress resistance in Arabidopsis. Plant Sci. 297, 110529.

[111]

Zhang, D., Yang, H., Wang, X., Qiu, Y., Tian, L., Qi, X., Qu, L.Q., 2020c. Cytochrome P 450 family member CYP96B5 hydroxylates alkanes to primary alcohols and is involved in rice leaf cuticular wax synthesis. New Phytol. 225, 2094-2107.

[112]

Zhang, J.Y., Broeckling, C.D., Sumner, L.W., Wang, Z.Y., 2007. Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol. Biol. 64, 265-278.

[113]

Zhang, P., Wang, R., Yang, X., Ju, Q., Li, W., S., Tran, L.P., Xu, J., 2020d. The R2R3-MYB transcription factor AtMYB 49 modulates salt tolerance in Arabidopsis by modulating the cuticle formation and antioxidant defence. Plant Cell Environ. 43, 1925-1943.

[114]

Zhang, X., Ni, Y., Xu, D., Busta, L., Xiao, Y., Jetter, R., Guo, Y., 2021. Integrative analysis of the cuticular lipidome and transcriptome of sorghum bicolor reveals cultivar differences in drought tolerance. Plant Physiol. Biochem. 163, 285-295.

[115]

Zhang, Y.L., Zhang, C.L., Wang, G.L., Wang, Y.X., Qi, C.H., You, C.X., Li, Y.Y., Hao, Y.J., 2019. Apple AP2/EREBP transcription factor MdSHINE 2 confers drought resistance by regulating wax biosynthesis. Planta 249, 1627-1643.

[116]

Zhang, Z., Wang, W., Li, W., 2013. Genetic interactions underlying the biosynthesis and inhibition of β-diketones in wheat and their impact on glaucousness and cuticle permeability. PLoS One 8, e54129.

[117]

Zheng, Z., Xia, Q., Dauk, M., Shen, W., Selvaraj, G., Zou, J., 2003. Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell 15, 1872-1887.

[118]

Zheng, Z., Zou, J., 2001. The initial step of the glycerolipid pathway: identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae. J. Biol. Chem. 276, 41710-41716.

[119]

Zhu, X., Xiong, L., 2013. Putative megaenzyme DWA 1 plays essential roles in drought resistance by regulating stress-induced wax deposition in rice. Proc. Natl. Acad. Sci. U. S. A. 110, 17790-17795.

AI Summary AI Mindmap
PDF

591

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/