Genotypic adaptation to soil water deficit in rice - a comparison of desirable traits for aerobic production and lowland drought resistance

Fukai Shu , Mitchell Jaquie

Crop and Environment ›› 2025, Vol. 4 ›› Issue (1) : 23 -37.

PDF
Crop and Environment ›› 2025, Vol. 4 ›› Issue (1) : 23 -37. DOI: 10.1016/j.crope.2024.12.003
Research article

Genotypic adaptation to soil water deficit in rice - a comparison of desirable traits for aerobic production and lowland drought resistance

Author information +
History +
PDF

Abstract

Rainfed lowland rice and aerobic rice are two contrasting cropping systems that differ greatly in their growing environment, water management, and yield level. Rainfed lowland rice is a common cropping system in tropical Asia and the crop is grown in a paddy field with standing water during some of the growing season producing a grain yield of up to 3-6 ​t ​ha−1. In contrast, aerobic rice is commonly irrigated, has no standing water in the field, and is being developed as a water-saving technology in temperate and subtropical areas with yield of up to 6-10 ​t ​ha−1. However, both rainfed lowland and aerobic rice commonly experience soil water deficit during growth, and genotypic adaptation to water deficit is required to produce high yield. This review describes how soil water deficit affects rice growth and yield and aims to identify traits required for lowland and aerobic rice in their adaptation to soil water deficit and ways to achieve yield improvement. Some common traits are found to be desirable in both cropping systems, including low canopy temperature and well-developed root systems at soil depth. While aerobic rice is shown to require high stomatal conductance with high stomatal density to minimise potential photosynthetic losses due to CO2 transport limitation, it appears desirable for rainfed lowland rice to adopt conservative water use and not consume soil water too quickly with adaptation mechanisms such as reduced stomatal density. This review concludes with several suggestions to improve grain yield in both rainfed lowland and aerobic rice.

Keywords

Aerobic rice / Canopy temperature / Drought resistance / Grain yield / Rainfed lowland / Soil water deficit

Cite this article

Download citation ▾
Fukai Shu, Mitchell Jaquie. Genotypic adaptation to soil water deficit in rice - a comparison of desirable traits for aerobic production and lowland drought resistance. Crop and Environment, 2025, 4(1): 23-37 DOI:10.1016/j.crope.2024.12.003

登录浏览全文

4963

注册一个新账户 忘记密码

Availability of data and materials

Not applicable.

Authors' contributions

S.F. and J.M.: Writing of original draft, reviewing, and editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Authors Shu Fukai and Jaquie Mitchell (Editorial Board members) were not involved in the journal's review nor decisions related to this manuscript.

Acknowledgements

We wish to thank Dr Ricky Vinarao for producing Fig. 3. We are grateful for grants from AgriFutures Australia PRJ-013282 and PRJ-011067.

Abbreviations

ABA abscisic acid

AWD alternate wetting and drying

CT canopy temperature

CTD canopy temperature depression

DRI drought response index

DS dry season

ET evapotranspiration

GWAS genome-wide association study

IRRI International Rice Research Institute

LWP leaf water potential

Mha million hectare

NIL near-isogenic line

PI panicle initiation

QTL quantitative trait loci

RCA root cone angle

RIL recombinant inbred line

RLD root length density

RUE radiation use efficiency

RWC relative water content

VPD vapour pressure deficit

WS wet season

References

[1]

Ali, M.L., Pathan, M.S., Zhang, J., Bai, G., Sarkarung, S., Nguyen, H.T., 2000. Mapping QTLs for root traits in a recombinant inbred population from two indica ecotypes in rice. Theor. Appl. Genet. 101, 756-766. https://doi.org/10.1007/s001220051541.

[2]

Babu, R.C., Shashidhar, H.E., Lilley, J.M., Thanh, N.D., Ray, J.D., Sadasivam, S., Sarkarung, S., O’Toole, J.C., Nguyen, H.T., 2001. Variation in root penetration ability, osmotic adjustment and dehydration tolerance among accessions of rice adapted to rainfed lowland and upland ecosystems. Plant Breed. 120, 233-238. https://doi.org/10.1046/j.1439-0523.2001.00578.x.

[3]

Belder, P., Bouman, B.A.M., Spiertz, J.H.J., Peng, S., Castaneda, A.R., Visperas, R.M., 2005. Crop performance, nitrogen and water use in flooded and aerobic rice. Plant Soil 273, 167-182. https://doi.org/10.1007/s11104-004-7401-4.

[4]

Bertolino, L.T., Caine, R.S., Gray, J.E., 2019. Impact of stomatal density and morphology on water-use efficiency in a changing world. Front. Plant Sci. 10, 225. https:// doi.org/10.3389/fpls.2019.00225.

[5]

Boling, A.A., Tuong, T.P., Suganda, H., Konboon, Y., Harnpichitvitaya, D., Bournan, B.A.M., Franco, D.T., 2008. The effect of toposequence position on soil properties, hydrology, and yield of rainfed lowland rice in Southeast Asia. Field Crops Res. 106, 22-33. https://doi.org/10.1016/j.fcr.2007.10.013.

[6]

Boonjung, H., Fukai, S., 1996a. Effects of soil water deficit at different growth stages on rice growth and yield under upland conditions. 1. Growth during drought. Field Crops Res. 48, 37-45. https://doi.org/10.1016/0378-4290(96)00038-X.

[7]

Boonjung, H., Fukai, S., 1996b. Effects of soil water deficit at different growth stages on rice growth and yield under upland conditions. 2. Phenology, biomass production and yield. Field Crops Res. 48, 47-55. https://doi.org/10.1016/0378-4290(96) 00039-1.

[8]

Bouman, B.A.M., Peng, S., Castaneda, A.R., Visperas, R.M., 2005. Yield and water use of irrigated tropical aerobic rice systems. Agric. Water Manage. 74, 87-105. https:// doi.org/10.1016/j.agwat.2004.11.007.

[9]

Bouman, B.A.M., Yang, X.G., Wang, H.Q., Wang, Z.M., Zhao, J.F., Chen, B., 2006. Performance of aerobic rice varieties under irrigated conditions in North China. Field Crops Res. 97, 53-65. https://doi.org/10.1016/j.fcr.2005.08.015.

[10]

Cairns, J.E., Impa, S.M., O’Toole, J.C., Jagadish, S.V.K., Price, A.H., 2011. Influence of the soil physical environment on rice (Oryza sativa L.) response to drought stress and its implications for drought research. Field Crops Res. 121, 303-310. https://doi.org/ 10.1016/j.fcr.2011.01.012.

[11]

Cal, A.J., Sanciangco, M., Rebolledo, M.C., Luquet, D., Torres, R.O., McNally, K.L., Henry, A., 2019. Leaf morphology, rather than plant water status, underlies genetic variation of rice leaf rolling under drought. Plant Cell Environ. 42, 1532-1544. https://doi.org/10.1111/pce.13514.

[12]

Champness, M., Ballester, C., Hornbuckle, J., 2023. Effect of soil moisture deficit on aerobic rice in temperate Australia. Agronomy 13, 168. https://doi.org/10.3390/ agronomy13010168.

[13]

Chao, S., Mitchell, J., Prakash, S., Bhandhari, B., Fukai, S., 2022. Effect of early harvest and variety difference on grain yield and pasting properties of brown rice. Crops 2, 23-39.

[14]

Chatterjee, J., Thakur, V., Nepomuceno, R., Coe, R.A., Dionora, J., Elmido-Mabilangan, A., Llave, A.D., Delos Reyes, A.M., Monroy, A.N., Canicosa, I., Bandyopadhyay, A., Jena, K.K., Brar, D.S., Quick, W.P., 2020. Natural diversity in stomatal features of cultivated and wild Oryza species. Rice 13, 58. https://doi.org/10.1186/s12284-020-00417-0.

[15]

Clark, L.J., Price, A.H., Steele, K.A., Whalley, W.R., 2008. Evidence from near-isogenic lines that root penetration increases with root diameter and bending stiffness in rice. Funct. Plant Biol. 35, 1163-1171. https://doi.org/10.1071/FP08132.

[16]

Dar, M.H., Bano, D.A., Waza, S.A., Zaidi, N.W., Majid, A., Shikari, A.B., Ahangar, M.A., Hossain, M., Kumar, A., Singh, U.S., 2021. Abiotic stress tolerance-progress and pathways of sustainable rice production. Sustainability 13, 2078. https://doi.org/ 10.3390/su13042078.

[17]

Darmadi, D., Junaedi, A., Sopandie, D., Supijatno, Lubis, I., Homma, K., 2021. Water- efficient rice performances under drought stress conditions. AIMS Agric. Food 6, 838-863. https://doi.org/10.3934/agrfood.2021051.

[18]

Dunn, B.W., Gaydon, D.S., 2011. Rice growth, yield and water productivity responses to irrigation scheduling prior to the delayed application of continuous flooding in south- east Australia. Agric. Water Manage. 98, 1799-1807. https://doi.org/10.1016/ j.agwat.2011.07.004.

[19]

de Borja, Reis, A.F.,de Almeida, R.E.M., Lago, B.C., Trivelin, P.C., Linquist, B., Favarin, J.L., 2018. Aerobic rice system improves water productivity, nitrogen recovery and crop performance in Brazilian weathered lowland soil. Field Crops Res. 218, 59-68. https://doi.org/10.1016/j.fcr.2018.01.002.

[20]

Farrell, T.C., Fukai, S., Williams, R.L., 2006. Minimising cold damage during reproductive development among temperate rice genotypes. I. Avoiding low temperature with the use of appropriate sowing time and photoperiod-sensitive varieties. Aust. J. Agric. Res. 57, 75-88. https://doi.org/10.1071/AR05185.

[21]

Fukai, S., Mitchell, J., 2022a. Factors determining water use efficiency in aerobic rice. Crop Environ. 1, 24-40. https://doi.org/10.1016/j.crope.2022.03.008.

[22]

Fukai, S., Mitchell, J., 2022b. Role of canopy temperature depression in rice. Crop Environ. 1, 198-213. https://doi.org/10.1016/j.crope.2022.09.001.

[23]

Fukai, S., Mitchell, J., 2024. Crop diversification in rainfed lowland rice ecosystems in tropical Asia. In: SparksD.L. ( Ed.), Advancesin Agronomy. AcademicPress, San DiegoUSA,pp.207-246.

[24]

Fukai, S., Ouk, M., 2012. Increased productivity of rainfed lowland rice cropping systems of the Mekong region. Crop Pasture Sci. 63, 944-973. https://doi.org/10.1071/CP12294.

[25]

Fukai, S., Wade, L.J., 2021. Chapter 2 - rice. In: SadrasV.O., CalderiniD.F. ( Crop Physiology Case Histories for Major Crops. AcademicPress, San DiegoUSA,Eds.), pp.44-97.

[26]

Gong, W.L., Proud, C., Fukai, S., Mitchell, J., 2023. Low canopy temperature and high stomatal conductance contribute to high grain yield of contrasting japonica rice under aerobic conditions. Front. Plant Sci. 14, 1176156. https://doi.org/10.3389/ fpls.2023.1176156.

[27]

GRiSP, 2013. Rice Almanac. International Rice Research Institute, Los Bañ

[28]

os, Philippines. Grondin, A., Dixit, S., Torres, R., Venkateshwarlu, C., Rogers, E., Mitchell-Olds, T., Benfey, P.N., Kumar, A., Henry, A., 2018. Physiological mechanisms contributing to the QTL qDTY3.2 effects on improved performance of rice Moroberekan × Swarna BC2F3:4 lines under drought. Rice 11, 43. https://doi.org/10.1186/s12284-018- 0234-1.

[29]

Gu, J.F., Chen, Y., Zhang, H., Li, Z.K., Zhou, Q., Yu, C., Kong, X.S., Liu, L.J., Wang, Z.Q., Yang, J.C., 2017. Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice. Field Crops Res. 206, 74-85. https://doi.org/ 10.1016/j.fcr.2017.02.021.

[30]

Ha, L.V., Mitchell, J.H., Fukai, S., 2018. Genotypic consistency for low temperature tolerance at the booting stage in rice grown under flooded and non-flooded conditions. Field Crops Res. 220, 19-26. https://doi.org/10.1016/j.fcr.2017.06.027.

[31]

Henry, A., Cal, A.J., Batoto, T.C., Torres, R.O., Serraj, R., 2012. Root attributes affecting water uptake of rice (Oryza sativa) under drought. J. Exp. Bot. 63, 4751-4763. https://doi.org/10.1093/jxb/ers150.

[32]

Henry, A., Gowda, V.R.P., Torres, R.O., McNally, K.L., Serraj, R., 2011. Variation in root system architecture and drought response in rice (Oryza sativa): Phenotyping of the OryzaSNP panel in rainfed lowland fields. Field Crops Res. 120, 205-214. https:// doi.org/10.1016/j.fcr.2010.10.003.

[33]

Henry, A., Wehler, R., Grondin, A., Franke, R., Quintana, M., 2016. Environmental and physiological effects on grouping of drought-tolerant and susceptible rice varieties related to rice (Oryza sativa) root hydraulics under drought. Ann. Bot. 118, 711-724. https://doi.org/10.1093/aob/mcw068.

[34]

Homma, K., Horie, T., Shiraiwa, T., Sripodok, S., Supapoj, N., 2004. Delay of heading date as an index of water stress in rainfed rice in mini-watersheds in Northeast Thailand. Field Crops Res. 88, 11-19. https://doi.org/10.1016/j.fcr.2003.08.010.

[35]

Inthapan, P., Fukai, S., 1988. Growth and yield of rice cultivars under sprinkler irrigation in Southeastern Queensland. 2. Comparison with maize and grain-sorghum under wet and dry conditions. Aust. J. Exp. Agric. 28, 243-248. https://doi.org/10.1071/ EA9880243.

[36]

Inthavong, T., Fukai, S., Tsubo, M., 2014. Estimation of separate effects of water and nutrient limitation for rainfed lowland rice within a province in the Mekong region. Field Crops Res. 163, 100-108. https://doi.org/10.1016/j.fcr.2014.03.020.

[37]

Inthavong, T., Tsubo, M., Fukai, S., 2011. A water balance model for characterization of length of growing period and water stress development for rainfed lowland rice. Field Crops Res. 121, 291-301. https://doi.org/10.1016/j.fcr.2010.12.019.

[38]

Ishimaru, T., Qin, J., Sasaki, K., Fujita, D., Gannaban, R.B., Lumanglas, P.D., Simon, E.V.M., Ohsumi, A., Takai, T., Kondo, M., Collard, B., Rustini, S., Voradethi, S., Boualaphanh, C., Susanto, U., Hairmansis, A., Hayashi, K., Jagadish, S.V.K., Fukuta, Y., Kobayashi, N., 2017. Physiological and morphological characterization of a high-yielding rice introgression line, YTH183, with genetic background of Indica Group cultivar, IR 64. Field Crops Res. 213, 89-99. https://doi.org/10.1016/j.fcr.2017.07.006.

[39]

Ishimaru, T., Sasaki, K., Lumanglas, P.D., Cabral, C.L.U., Ye, C.R., Yoshimoto, M., Kumar, A., Henry, A., 2022. Effect of drought stress on flowering characteristics in rice (Oryza sativa L.): a study using genotypes contrasting in drought tolerance and flower opening time. Plant Prod. Sci. 25, 359-370. https://doi.org/10.1080/ 1343943X.2022.2085589.

[40]

Jearakongman, S., Rajatasereekul, S., Naklang, K., Romyen, P., Fukai, S., Skulkhu, E., Jumpaket, B., Nathabutr, K., 1995. Growth and grain yield of contrasting rice cultivars grown under different conditions of water availability. Field Crops Res. 44, 139-150. https://doi.org/10.1016/0378-4290(95)00050-X.

[41]

Jongdee, B., Fukai, S., Cooper, M., 2002. Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Res. 76, 153-163. https://doi.org/10.1016/S0378-4290(02)00036-9.

[42]

Kadiyala, M.D.M., Mylavarapu, R.S., Li, Y.C., Reddy, G.B., Reddy, K.R., Reddy, M.D., 2015. Uptake efficiency of 15N-urea in flooded and aerobic rice fields under semi-arid conditions. Paddy Water Environ. 13, 545-556. https://doi.org/10.1007/s10333-014-0473-8.

[43]

Kamoshita, A., Babu, R.C., Boopathi, N.M., Fukai, S., 2008. Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Res. 109, 1-23. https://doi.org/10.1016/ j.fcr.2008.06.010.

[44]

Kano-Nakata, M., Gowda, V.R.P., Henry, A., Serraj, R., Inukai, Y., Fujita, D., Kobayashi, N., Suralta, R.R., Yamauchi, A., 2013. Functional roles of the plasticity of root system development in biomass production and water uptake under rainfed lowland conditions. Field Crops Res. 144, 288-296. https://doi.org/10.1016/j.fcr.2013.01.024.

[45]

Kato, Y., Abe, J., Kamoshita, A., Yamagishi, J., 2006. Genotypic variation in root growth angle in rice (Oryza sativa L.) and its association with deep root development in upland fields with different water regimes. Plant Soil 287, 117-129. https://doi.org/ 10.1007/s11104-006-9008-4.

[46]

Kato, Y., Henry, A., Fujita, D., Katsura, K., Kobayashi, N., Serraj, R., 2011. Physiological characterization of introgression lines derived from an indica rice cultivar, IR64, adapted to drought and water-saving irrigation. Field Crops Res. 123, 130-138. https://doi.org/10.1016/j.fcr.2011.05.009.

[47]

Kato, Y., Kamoshita, A., Yamagishi, J., 2007. Evaluating the resistance of six rice cultivars to drought: restriction of deep rooting and the use of raised beds. Plant Soil 300, 149-161. https://doi.org/10.1007/s11104-007-9397-z.

[48]

Kato, Y., Katsura, K., 2014. Rice adaptation to aerobic soils: physiological considerations and implications for agronomy. Plant Prod. Sci. 17, 1-12. https://doi.org/10.1626/ pps.17.1.

[49]

Kato, Y., Tajima, R., Homma, K., Toriumi, A., Yamagishi, J., Shiraiwa, T., Mekwatanakarn, P., Jongdee, B., 2013. Root growth response of rainfed lowland rice to aerobic conditions in northeastern Thailand. Plant Soil 368, 557-567. https://doi.org/10.1007/s11104-012- 1538-3.

[50]

Kato, Y., Tajima, R., Toriumi, A., Homma, K., Moritsuka, N., Shiraiwa, T., Yamagishi, J., Mekwatanakern, P., Chamarerk, V., Jongdee, B., 2016. Grain yield and phosphorus uptake of rainfed lowland rice under unsubmerged soil stress. Field Crops Res. 190, 54-59. https://doi.org/10.1016/j.fcr.2016.01.004.

[51]

Kirk, G.J.D., George, T., Courtois, B., Senadhira, D., 1998. Opportunities to improve phosphorus efficiency and soil fertility in rainfed lowland and upland rice ecosystems. Field Crops Res. 56, 73-92. https://doi.org/10.1016/S0378-4290(97) 00141-X.

[52]

Kirk, G.J.D., Greenway, H., Atwell, B.J., Ismail, A.M., Colmer, T.D., 2014. Adaptation of rice to flooded soils. In: LuttgeU., BeyschlagW., CushmanJ. ( Progressin Botany.Eds.), Springer Berlin, Heidelberg, Germany, pp. 215-253.

[53]

Kumar, A., Bernier, J., Verulkar, S., Lafitte, H.R., Atlin, G.N., 2008. Breeding for drought tolerance: Direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crops Res. 107, 221-231. https://doi.org/10.1016/j.fcr.2008.02.007.

[54]

Kumar, A., Raman, A., Yadav, S., Verulkar, S.B., Mandal, N.P., Singh, O.N., Swain, P., Ram, T., Badri, J., Dwivedi, J.L., Das, S.P., Singh, S.K., Singh, S.P., Kumar, S., Jain, A., Chandrababu, R., Robin, S., Shashidhar, H.E., Hittalmani, S., Satyanarayana, P., Venkateshwarlu, C., Ramayya, J., Naik, S., Nayak, S., Dar, M.H., Hossain, S.M., Henry, A., Piepho, H.P., 2021a. Genetic gain for rice yield in rainfed environments in India. Field Crops Res. 260, 107977. https://doi.org/10.1016/j.fcr.2020.107977.

[55]

Kumar, A., Verulkar, S.B., Mandal, N.P., Variar, M., Shukla, V.D., Dwivedi, J.L., Singh, B.N., Singh, O.N., Swain, P., Mall, A.K., Robin, S., Chandrababu, R., Jain, A., Haefele, S.M., Piepho, H.P., Raman, A., 2012. High-yielding, drought-tolerant, stable rice genotypes for the shallow rainfed lowland drought-prone ecosystem. Field Crops Res. 133, 37-47. https://doi.org/10.1016/j.fcr.2012.03.007.

[56]

Kumar, R., Venuprasad, R., Atlin, G.N., 2007. Genetic analysis of rainfed lowland rice drought tolerance under naturally-occurring stress in eastern India: Heritability and QTL effects. Field Crops Res. 103, 42-52. https://doi.org/10.1016/ j.fcr.2007.04.013.

[57]

Kumar, S., Dwivedi, S.K., Basu, S., Kumar, G., Mishra, J.S., Koley, T.K., Rao, K.K., Choudhary, A.K., Mondal, S., Kumar, S., Bhakta, N., Bhatt, B.P., Paul, R.K., Kumar, A., 2020. Anatomical, agro-morphological and physiological changes in rice under cumulative and stage specific drought conditions prevailed in eastern region of India. Field Crops Res. 245, 107658. https://doi.org/10.1016/j.fcr.2019.107658.

[58]

Kumar, S., Tripathi, S., Singh, S.P., Prasad, A., Akter, F., Abu Syed, M., Badri, J., Das, S.P., Bhattarai, R., Natividad, M.A., Quintana, M., Venkateshwarlu, C., Raman, A., Yadav, S., Singh, S.K., Swain, P., Anandan, A., Yadaw, R.B., Mandal, N.P., Verulkar, S.B., Kumar, A., Henry, A., 2021b. Rice breeding for yield under drought has selected for longer flag leaves and lower stomatal density. J. Exp. Bot. 72, 4981-4992. https://doi.org/10.1093/jxb/erab160.

[59]

Lawas, L.M.F., Shi, W.J., Yoshimoto, M., Hasegawa, T., Hincha, D.K., Zuther, E., Jagadishi, S.V.K., 2018. Combined drought and heat stress impact during flowering and grain filling in contrasting rice cultivars grown under field conditions. Field Crops Res. 229, 66-77. https://doi.org/10.1016/j.fcr.2018.09.009.

[60]

Lilley, J.M., Fukai, S., 1994a. Effect of timing and severity of water deficit on four diverse rice cultivars I. Rooting pattern and soil water extraction. Field Crops Res. 37, 205-213. https://doi.org/10.1016/0378-4290(94)90099-X.

[61]

Lilley, J.M., Fukai, S., 1994b. Effect of timing and severity of water deficit on four diverse rice cultivars II. Physiological responses to soil water deficit. Field Crops Res. 37, 215-223. https://doi.org/10.1016/0378-4290(94)90100-7.

[62]

Lilley, J.M., Fukai, S., 1994c. Effect if timing and severity of water deficit on 4 diverse rice cultivars. III. Phenological development, crop growth and grain yield. Field Crops Res. 37, 225-234. https://doi.org/10.1016/0378-4290(94)90101-5.

[63]

Manickavelu, A., Nadarajan, N., Ganesh, S.K., Gnanamalar, R.P., Babu, R.C., 2006. Drought tolerance in rice: morphological and molecular genetic consideration. Plant Growth Regul. 50, 121-138. https://doi.org/10.1007/s10725-006-9109-3.

[64]

Matsui, T., Kobayasi, K., Nakagawa, H., Yoshimoto, M., Hasegawa, T., Reinke, R., Angus, J., 2014. Lower-than-expected floret sterility of rice under extremely hot conditions in a flood-irrigated field in New South Wales, Australia. Plant Prod. Sci, 17, 245-252. https://doi.org/10.1626/pps.17.245.

[65]

McClung, A.M., Rohila, J.S., Henry, C.G., Lorence, A., 2020. Response of U.S. rice cultivars grown under non-flooded irrigation management. Agronomy 10, 55. https://doi.org/10.3390/agronomy10010055.

[66]

Melandri, G., AbdElgawad, H., Floková K., Jamar, D.C., Asard, H., Beemster, G.T.S., Ruyter-Spira, C., Bouwmeester, H.J., 2021. Drought tolerance in selected aerobic and upland rice varieties is driven by different metabolic and antioxidative responses. Planta 254, 13. https://doi.org/10.1007/s00425-021-03659-4.

[67]

Mitchell, J.H., Siamhan, D., Wamala, M.H., Risimeri, J.B., Chinyamakobvu, E., Henderson, S.A., Fukai, S., 1998. The use of seedling leaf death score for evaluation of drought resistance of rice. Field Crops Res. 55, 129-139. https://doi.org/10.1016/ s0378-4290(97)00074-9.

[68]

Mitchell, J.H., Zulkafli, S.L., Bosse, J., Campbell, B., Snell, P., Mace, E.S., Godwin, I.D., Fukai, S., 2016. Rice-cold tolerance across reproductive stages. Crop Pasture Sci, 67, 823-833. https://doi.org/10.1071/CP15331.

[69]

Monkham, T., Jongdee, B., Pantuwan, G., Mitchell, J.H., Sanitchon, J., Fukai, S., 2018. On-farm multi-location evaluation of occurrence of drought types and rice genotypes selected from controlled-water on-station experiments in Northeast Thailand. Field Crops Res. 220, 27-36. https://doi.org/10.1016/j.fcr.2017.05.004.

[70]

Muirhead, W.A., Blackwell, J., Humphreys, E., White, R.J.G., 1989. The growth and nitrogen economy of rice under sprinkler and flood irrigation in South East Australia: I. Crop response and N-uptake. Irrig. Sci. 10, 183-199.

[71]

Nie, L.X., Peng, S.B., Chen, M.X., Shah, F., Huang, J.L., Cui, K.H., Xiang, J., 2012. Aerobic rice for water-saving agriculture. A review. Agron. Sustain. Dev. 32, 411-418. https://doi.org/10.1007/s13593-011-0055-8.

[72]

Ohno, H., Banayo, N.P.M.C., Bueno, C., Kashiwagi, J., Nakashima, T., Iwama, K., Corales, A.M., Garcia, R., Kato, Y., 2018. On-farm assessment of a new early-maturing drought-tolerant rice cultivar for dry direct seeding in rainfed lowlands. Field Crops Res. 219, 222-228. https://doi.org/10.1016/j.fcr.2018.02.005.

[73]

Okami, M., Kato, Y., Kobayashi, N., Yamagishi, J., 2014. Agronomic performance of an IR64 introgression line with large leaves derived from New Plant Type rice in aerobic culture. Eur. J. Agron. 58, 11-17. https://doi.org/10.1016/j.eja.2014.03.001.

[74]

Ouk, M., Basnayake, J., Tsubo, M., Fukai, S., Fischer, K.S., Cooper, M., Nesbitt, H., 2006. Use of drought response index for identification of drought tolerant genotypes in rainfed lowland rice. Field Crops Res. 99, 48-58. https://doi.org/10.1016/ j.fcr.2006.03.003.

[75]

Ouk, M., Basnayake, J., Tsubo, M., Fukai, S., Fischer, K.S., Kang, S., Men, S., Thun, V., Cooper, M., 2007. Genotype-by-environment interactions for grain yield associated with water availability at flowering in rainfed lowland rice. Field Crops Res. 101, 145-154. https://doi.org/10.1016/j.fcr.2006.10.003.

[76]

Ouyang, W.J., Struik, P.C., Yin, X.Y., Yang, J.C., 2017. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. J. Exp. Bot. 68, 5191-5205. https://doi.org/ 10.1093/jxb/erx314.

[77]

Pantuwan, G., Fukai, S., Cooper, M., Rajatasereekul, S., O'Toole, J.C., 2002a. Yield response of rice (Oryza sativa L.) genotypes to different types of drought under rainfed lowlands: Part 1. Grain yield and yield components. Field Crops Res. 73, 153-168. https://doi.org/10.1016/S0378-4290(01)00187-3.

[78]

Pantuwan, G., Fukai, S., Cooper, M., Rajatasereekul, S., O'Toole, J.C., 2002b. Yield response of rice (Oryza sativa L.) genotypes to different types of drought under rainfed lowlands: Part 2. Selection of drought resistant genotypes. Field Crops Res. 73, 169-180. https://doi.org/10.1016/S0378-4290(01)00195-2.

[79]

Pantuwan, G., Fukai, S., Cooper, M., Rajatasereekul, S., O'Toole, J.C., 2002c. Yield response of rice (Oryza sativa L.) genotypes to different types of drought under rainfed lowlands: Part 3. Plant factors contributing to drought resistance. Field Crops Res. 73, 181-200. https://doi.org/10.1016/S0378-4290(01)00194-0.

[80]

Patil, S.K., Singh, U., Singh, V.P., Mishra, V.N., Das, R.O., Henao, J., 2001. Nitrogen dynamics and crop growth on an Alfisol and a Vertisol under a direct-seeded rainfed lowland rice-based system. Field Crops Res. 70, 185-199. https://doi.org/10.1016/ S0378-4290(01)00135-6.

[81]

Peng, S.B., Bouman, B., Visperas, R.M., Castaneda, A., Nie, L.X., Park, H.K., 2006. Comparison between aerobic and flooded rice in the tropics: Agronomic performance in an eight-season experiment. Field Crops Res. 96, 252-259. https://doi.org/ 10.1016/j.fcr.2005.07.007.

[82]

Pinheiro, B.D.S., de Castro, E.D.M., Guimaraes, C.M., 2006. Sustainability and profitability of aerobic rice production in Brazil. Field Crops Res. 97, 34-42. https:// doi.org/10.1016/j.fcr.2005.08.013.

[83]

Pinto, V.M., de Borja Reis, A.F., de Melo, M.L.A., Reichardt, K., Santos, D., de Jong van Lier, Q., 2023. Sustainable irrigation management in tropical lowland rice in Brazil. Agric. Water Manage. 284, 108345. https://doi.org/10.1016/j.agwat.2023.108345.

[84]

Pitaloka, M.K., Caine, R.S., Hepworth, C., Harrison, E.L., Sloan, J., Chutteang, C., Phunthong, C., Nongngok, R., Toojinda, T., Ruengphayak, S., Arikit, S., Gray, J.E., Vanavichit, A., 2022. Induced genetic variations in stomatal density and size of rice strongly affects water use efficiency and responses to drought stresses. Front. Plant Sci. 13, 801706. https://doi.org/10.3389/fpls.2022.801706.

[85]

Praba, M.L., Cairns, J.E., Babu, R.C., Lafitte, H.R., 2009. Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J. Agron. Crop Sci. 195, 30-46. https://doi.org/10.1111/j.1439-037X.2008.00341.x.

[86]

Proud, C., Fukai, S., Dunn, B., Dunn, T., Mitchell, J., 2023. Effect of nitrogen management on grain yield of rice grown in a high yielding environment under flooded and non- flooded conditions. Crop Environ. 2, 37-45. https://doi.org/10.1016/ j.crope.2023.02.004.

[87]

Saikumar, S., Kalmeshwer Gouda, P., Saiharini, A., Varma, C.M.K., Vineesha, O., Padmavathi, G., Shenoy, V.V., 2014. Major QTL for enhancing rice grain yield under lowland reproductive drought stress identified using an O. sativa/O. glaberrima introgression line. Field Crops Res. 163, 119-131. https://doi.org/10.1016/ j.fcr.2014.03.011.

[88]

Samson, B.K., Hasan, M., Wade, L.J., 2002. Penetration of hardpans by rice lines in the rainfed lowlands. Field Crops Res. 76, 175-188. https://doi.org/10.1016/S0378- 4290(02)00038-2.

[89]

Shiono, K., Ogawa, S., Yamazaki, S., Isoda, H., Fujimura, T., Nakazono, M., Colmer, T.D., 2011. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths. Ann. Bot. 107, 89-99. https://doi.org/ 10.1093/aob/mcq221.

[90]

Sibounheuang, V., Basnayake, J., Fukai, S., 2006. Genotypic consistency in the expression of leaf water potential in rice (Oryza sativa L.). Field Crops Res. 97, 142-154. https:// doi.org/10.1016/j.fcr.2005.09.006.

[91]

Sujariya, S., Jongdee, B., Fukai, S., 2023. Estimation of flowering time and its effect on grain yield of photoperiod sensitive varieties in rainfed lowland rice in Northeast Thailand. Field Crops Res. 302, 109075. https://doi.org/10.1016/j.fcr.2023.109075.

[92]

Suji, K.K., Prince, K.S.J., Mankhar, P.S., Kanagaraj, P., Poornima, R., Amutha, K., Kavitha, S., Biji, K.R., Gomez, S.M., Babu, R.C., 2012. Evaluation of rice (Oryza sativa L.) near iso-genic lines with root QTLs for plant production and root traits in rainfed target populations of environment. Field Crops Res. 137, 89-96. https://doi.org/ 10.1016/j.fcr.2012.08.006.

[93]

Swain, P., Raman, A., Singh, S.P., Kumar, A., 2017. Breeding drought tolerant rice for shallow rainfed ecosystem of eastern India. Field Crops Res. 209, 168-178. https:// doi.org/10.1016/j.fcr.2017.05.007.

[94]

Torres, R.O., Henry, A., 2018. Yield stability of selected rice breeding lines and donors across conditions of mild to moderately severe drought stress. Field Crops Res. 220, 37-45. https://doi.org/10.1016/j.fcr.2016.09.011.

[95]

Uga, Y., Okuno, K., Yano, M., 2011. Dro1, a major QTL involved in deep rooting of rice under upland field conditions. J. Exp. Bot. 62, 2485-2494. https://doi.org/10.1093/ jxb/erq429.

[96]

Venuprasad, R., Shashidhar, H.E., Hittalmani, S., Hemamalini, G.S., 2002. Tagging quantitative trait loci associated with grain yield and root morphological traits in rice (Oryza sativa L.) under contrasting moisture regimes. Euphytica 128, 293-300. https://doi.org/10.1023/A:1021281428957.

[97]

Vijayaraghavareddy, P., Xinyou, Y., Struik, P.C., Makarla, U., Sreeman, S., 2020. Responses of lowland, upland and aerobic rice genotypes to water limitation during different phases. Rice Sci. 27, 345-354. https://doi.org/10.1016/j.rsci.2020.05.009.

[98]

Vinarao, R., Proud, C., Snell, P., Fukai, S., Mitchell, J., 2021a. QTL validation and development of SNP-based high throughput molecular markers targeting a genomic region conferring narrow root cone angle in aerobic rice production systems. Plants 10, 2099. https://doi.org/10.3390/plants10102099.

[99]

Vinarao, R., Proud, C., Snell, P., Fukai, S., Mitchell, J., 2022. Genomic regions and floral traits contributing to low temperature tolerance at young microspore stage in a rice (Oryza sativa L.) recombinant inbred line population of Sherpa/IRAT109. Front. Plant Sci. 13, 873677. https://doi.org/10.3389/fpls.2022.873677.

[100]

Vinarao, R., Proud, C., Snell, P., Fukai, S., Mitchell, J., 2023. Narrow root cone angle promotes deeper rooting, cooler canopy temperatures and higher grain yield in a rice (Oryza sativa L.) recombinant inbred line population grown under different water availabilities in aerobic production systems. Field Crops Res. 299, 108989. https:// doi.org/10.1016/j.fcr.2023.108989.

[101]

Vinarao, R., Proud, C., Zhang, X.L., Snell, P., Fukai, S., Mitchell, J., 2021b. Stable and novel quantitative trait loci (QTL) confer narrow root cone angle in an aerobic Rice (Oryza sativa L.) production system. Rice 14, 28. https://doi.org/10.1186/s12284-021-00471-2.

[102]

Wade, L.J., Amarante, S.T., Olea, A., Harnpichitvitaya, D., Naklang, K., Wihardjaka, A., Sengar, S.S., Mazid, M.A., Singh, G., McLaren, C.G., 1999. Nutrient requirements in rainfed lowland rice. Field Crops Res. 64, 91-107. https://doi.org/10.1016/S0378- 4290(99)00053-2.

[103]

Wade, L.J., Bartolome, V., Mauleon, R., Vasant, V.D., Prabakar, S.M., Chelliah, M., Kameoka, E., Nagendra, K., Reddy, K.R.K., Varma, C.M.K., Patil, K.G., Shrestha, R., Al-Shugeairy, Z., Al-Ogaidi, F., Munasinghe, M., Gowda, V., Semon, M., Suralta, R.R., Shenoy, V., Vadez, V., Serraj, R., Shashidhar, H.E., Yamauchi, A., Babu, R.C., Price, A., McNally, K.L., Henry, A., 2015. Environmental response and genomic regions correlated with rice root growth and yield under drought in the OryzaSNP panel across multiple study systems. PLoS One 10, e0124127. https://doi.org/ 10.1371/journal.pone.0124127.

[104]

Wang, X.X., Du, T.T., Huang, J.L., Peng, S.B., Xiong, D.L., 2018. Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice. J. Exp. Bot. 69, 4033-4045. https://doi.org/10.1093/jxb/ery188.

[105]

Wang, X.X., Huang, J.L., Peng, S.B., Xiong, D.L., 2023. Leaf rolling precedes stomatal closure in rice (Oryza sativa) under drought conditions. J. Exp. Bot. 74, 6650-6661. https://doi.org/10.1093/jxb/erad316.

[106]

Wei, H.H., Geng, X.Y., Zhu, W., Zhang, X., Zhang, X.B., Chen, Y.L., Huo, Z.Y., Xu, K., Zhou, G.S., Meng, T.Y., Dai, Q.G., 2023. Individual and combined influences of salinity and drought stress on the agro-physiological traits and grain yield of rice. Field Crops Res. 304, 109172. https://doi.org/10.1016/j.fcr.2023.109172.

[107]

Wu, L.L., de Boer, H.J., Zhang, Z.X., Chen, X.L., Shi, Y.Y., Peng, S.B., Wang, F., 2020. The coordinated increase in stomatal density and vein dimensions during genetic improvement in rice. Agron. J. 112, 2791-2804. https://doi.org/10.1002/ agj2.20180.

[108]

Xangsayasane, P., Jongdee, B., Pantuwan, G., Fukai, S., Mitchell, J.H., Inthapanya, P., Jothiyangkoon, D., 2014. Genotypic performance under intermittent and terminal drought screening in rainfed lowland rice. Field Crops Res. 156, 281-292. https:// doi.org/10.1016/j.fcr.2013.10.017.

[109]

Xu, C.M., Chen, L.P., Chen, S., Chu, G., Wang, D.Y., Zhang, X.F., 2020a. Rhizosphere aeration improves nitrogen transformation in soil, and nitrogen absorption and accumulation in rice plants. Rice Sci. 27, 162-174. https://doi.org/10.1016/ j.rsci.2020.01.007.

[110]

Xu, P., Yang, J., Ma, Z.B., Yu, D.Q., Zhou, J.W., Tao, D.Y., Li, Z.C., 2020b. Identification and validation of aerobic adaptation QTLs in upland rice. Life 10, 65. https://doi.org/ 10.3390/life10050065.

[111]

Yadaw, R.B., Dixit, S., Raman, A., Mishra, K.K., Vikram, P., Swamy, B.P.M., Cruz, M.T.S., Maturan, P.T., Pandey, M., Kumar, A., 2013. A QTL for high grain yield under lowland drought in the background of popular rice variety Sabitri from Nepal. Field Crops Res. 144, 281-287. https://doi.org/10.1016/j.fcr.2013.01.019.

[112]

Yamauchi, T., Colmer, T.D., Pedersen, O., Nakazono, M., 2018. Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant Physiol. 176, 1118-1130. https://doi.org/10.1104/pp.17.01157.

[113]

Yanai, J., Hirose, M., Tanaka, S., Sakamoto, K., Nakao, A., Dejbhimon, K., Sriprachote, A., Kanyawongha, P., Lattirasuvan, T., Abe, S., 2020. Changes in paddy soil fertility in Thailand due to the Green Revolution during the last 50 years. Soil Sci. Plant Nutr. 66, 889-899. https://doi.org/10.1080/00380768.2020.1814115.

[114]

Yanai, J., Tanaka, S., Abe, S., Nakao, A., 2022. Changes in Paddy Soil Fertility in Tropical Asia under Green Revolution from the 1960s. to the 2010s. Springer, Kallang, Singapore. Yang, X., Bouman, B.A.M., Wang, H., Wang, Z., Zhao, J., Chen, B., 2005. Performance of temperate aerobic rice under different water regimes in North China. Agric. Water Manage. 74, 107-122. https://doi.org/10.1016/j.agwat.2004.11.008.

[115]

Zhang, Q.Q., Tang, W., Xiong, Z., Peng, S.B., Li, Y., 2023. Stomatal conductance in rice leaves and panicles responds differently to abscisic acid and soil drought. J. Exp. Bot. 74, 1551-1563. https://doi.org/10.1093/jxb/erac496.

AI Summary AI Mindmap
PDF

319

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/