Increasing seedling number alleviates the adverse effects of warming on grain yield and reduces greenhouse gas emission in late-season rice

Xiong Ruoyu , Wu Longmei , Bao Xiaozhe , Zhang Bin , Cao Liming , Yang Taotao

Crop and Environment ›› 2025, Vol. 4 ›› Issue (1) : 14 -22.

PDF
Crop and Environment ›› 2025, Vol. 4 ›› Issue (1) : 14 -22. DOI: 10.1016/j.crope.2024.12.001
Research article

Increasing seedling number alleviates the adverse effects of warming on grain yield and reduces greenhouse gas emission in late-season rice

Author information +
History +
PDF

Abstract

To address the adverse effects of warming on late-season rice, we investigated the impact of increasing the number of seedlings on rice yield, quality, and greenhouse gas (GHG) emissions under canopy warming conditions using the free-air temperature increase (FATI) system. Three treatments were implemented: ambient temperature with two seedlings hill-1 (CKS1), canopy warming with two seedlings hill-1 (WS1), and canopy warming with four seedlings hill-1 (WS2). FATI increased rice canopy temperature and soil temperature by an average of 1.9-2.2°C and 0.6-0.8°C, respectively, over the two years. The yield in WS1 was significantly reduced by 10.1%-12.1% compared with CKS1, which was attributed to a significant decrease in total spikelets m-2 and spikelets panicle-1, despite a notable increase in filled grains in 2023. However, WS2 demonstrated no significant change in yield compared with CKS1. Analysis of yield components revealed that WS2 exhibited significantly higher panicles m-2 than CKS1, while the spikelets panicle-1 were significantly lower than CKS1. No significant changes were observed in grain weight and processing and appearance qualities. Compared with that under CKS1, CH4 was significantly reduced under WS2 treatment in both years, and the global warming potential (GWP) and GHG intensity (GHGI) showed a decrease, with notable differences observed in 2022. Therefore, increasing the number of seedlings hill-1 can alleviate the negative impacts of canopy warming on grain yield and reduce GHG emissions in late-season rice.

Keywords

FATI / Grain yield / Greenhouse gas emissions / Late-season rice / Seedling number

Cite this article

Download citation ▾
Xiong Ruoyu, Wu Longmei, Bao Xiaozhe, Zhang Bin, Cao Liming, Yang Taotao. Increasing seedling number alleviates the adverse effects of warming on grain yield and reduces greenhouse gas emission in late-season rice. Crop and Environment, 2025, 4(1): 14-22 DOI:10.1016/j.crope.2024.12.001

登录浏览全文

4963

注册一个新账户 忘记密码

Abbreviations

FATI free-air temperature increase

GHG greenhouse gas

GHGI greenhouse gas intensity

GWP global warming potential

Availability of data and materials

Data will be shared upon request by the readers.

Authors’ contributions

R.X.: writing, reviewing, and editing; L.W.: data curation; X.B.: data analysis; B.Z. and L.C.: methodology; and T.Y.: writing, reviewing, and editing.

Declaration of competing interest

The authors declare that they have no competing interests.

Acknowledgements

The study was funded by the Agriculture Research System of Shanghai, China (Grant No. 202403), the Guangzhou Science and Technology Plan Project (2023A04J0807), National Natural Science Foundation of China (32201900), and the Natural Science Foundation of Guangdong Province (2022A1515011279).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.crope.2024.12.001.

References

[1]

Bai, E., Li, S., Xu, W., Li, W., Dai, W., Jiang, P., 2013. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol. 199, 431-440. https://doi.org/10.1111/nph.12252.

[2]

Bakken, L.R., Bergaust, L., Liu, B., Frostegard, A., 2012. Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils. Philos. Trans. R. Soc. B-Biol. Sci. 367, 1226-1234. https://doi.org/10.1098/rstb.2011.0321.

[3]

Blankinship, J.C., Brown, J.R., Dijkstra, P., Hungate, B.A., 2010. Effects of interactive global changes on methane uptake in an annual grassland. J. Geophys. Res. 115, G02008. https://doi.org/10.1029/2009JG001097.

[4]

Cai, C., Yin, X.Y., He, S.Q., Jiang, W.Y., Si, C.F., Struik, P., Luo, W.H., Li, G., Xie, Y.T., Xiong, Y., Pan, G.X., 2016. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Glob. Change Biol. 22, 856-874. https://doi.org/10.1111/gcb.13065.

[5]

Cai, Z.C., Shan, Y.H., Xu, H., 2007. Effects of nitrogen fertilization on CH 4 emissions from rice fields. Soil Sci. Plant Nutr. 53, 353-361. https://doi.org/10.1111/j.1747-0765.2007.00153.x.

[6]

Cantarel, A.A.M., Bloor, J.M.G., Pommier, T., Guillaumaud, N., Moirot, C., Soussana, J.F., Poly, F., 2012. Four years of experimental climate change modifies the microbial drivers of N2O fluxes in an upland grassland ecosystem. Glob. Change Biol. 18, 2520-2531. https://doi.org/10.1111/j.1365-2486.2012.02692.x.

[7]

Chen, C.Q., Groenigen, K.J., Yang, H.Y., Hungate, B.A., Yang, B., Tian, Y.L., Cheng, J., Dong, W.J., Huang, S., Deng, A.X., Jiang, Y., Zhang, W.J., 2020. Global warming and shifts in cropping systems together reduce China’s rice production. Glob. Food Secur. 24, 100359. https://doi.org/10.1016/j.gfs.2020.100359.

[8]

Chen, L.M., Yang, T.T., Xiong, R.Y., Tan, X.M., Huang, S., Zeng, Y.J., Pan, X.H., Shi, Q.H., Zhang, J., Zeng, Y.H., 2023. Effect of free-air temperature increasing on activities of enzymes involved in starch synthesis and accumulation of double-cropping indica rice. Chin. J. Rice Sci. 37, 166-177. https://doi.org/10.16819/j.1001-7216.2023.220414.

[9]

Chen, Y.H., Wang, Y.L., Zhu, D.F., Shi, Q.H., Chen, H.Z., Xiang, J., Zhang, Y.K., Zhang, Y.P., 2019. Mechanism of exogenous brassinolide in alleviating high temperature injury at panicle initiation stage in rice. Chin. J. Rice Sci. 33, 457-466. https://doi.org/10.16819/j.1001-7216.2019.9036.

[10]

Cui, Q., Song, C., Wang, X., Shi, F., Yu, X., Tan, W., 2018. Effects of warming on N2O fluxes in a boreal peatland of Permafrost region, Northeast China. Sci. Total Environ. 616, 427-434. https://doi.org/10.1016/j.scitotenv.2017.10.246.

[11]

Dai, Z., Yu, M., Chen, H., Zhao, H., Huang, Y., Su, W., Xia, F., Chang, S.X., Brookes, P.C., Dahlgren, R.A., Xu, J., 2020. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Glob. Change Biol. 26, 5267-5276. https://doi.org/10.1111/gcb.15211.

[12]

Deng, F., Li, B., Yuan, Y.J., He, C.Y., Zhou, X., Li, Q.P., Zhu, Y.Y., Huang, X.F., He, Y.X., Ai, X.F., Tao, Y.F., Zhou, W., Wang, L., Cheng, H., Chen, Y., Wang, M.T., Ren, W.J., 2022. Increasing the number of seedlings per hill with reduced number of hills improves rice grain quality by optimizing canopy structure and light utilization under shading stress. Field Crops Res. 287, 108668. https://doi.org/10.1016/j.fcr.2022.108668.

[13]

Diao, H.Y., Cernusak, L.A., Saurer, M., Gessler, A., Siegwolf, R.T.W., Lehmann, M.M., 2024. Uncoupling of stomatal conductance and photosynthesis at high temperatures: mechanistic insights from online stable isotope techniques. New Phytol. 241, 2366-2378. https://doi.org/10.1111/nph.19558.

[14]

Dong, W.J., Chen, J., Zhang, B., Tian, Y.L., Zhang, W.J., 2011. Responses of biomass growth and grain yield of midseason rice to the anticipated warming with FATI facility in East China. Field Crops Res. 123, 259-265. https://doi.org/10.1016/ j.fcr.2011.05.024.

[15]

Fei, L.W., Yang, S.C., Ma, A.L.Y., Lun, Z.C., Wang, M., Wang, G.J., Guo, S.W., 2023. Grain chalkiness is reduced by coordinating the biosynthesis of protein and starch in fragrant rice (Oryza sativa L.) grain under nitrogen fertilization. Field Crops Res. 302, 109098. https://doi.org/10.1016/j.fcr.2023.109098.

[16]

Gaihre, Y.K., Wassmann, R., Villegas, P.G., Sanabria, J., Aquino, E., Sta. Cruz, P.C., Paningbatan, E.P.J.R., 2016. Effects of increased temperatures and rice straw incorporation on methane and nitrous oxide emissions in a greenhouse experiment with rice. Eur. J. Soil Sci. 67, 868-880. https://doi.org/10.1111/ejss.12389.

[17]

Hussain, S., Peng, S., Fahad, S., Khaliq, A., Huang, J., Cui, K., Nie, L., 2015. Rice management interventions to mitigate greenhouse gas emissions: a review. Environ. Sci. Pollut. Res. 22, 3342-3360. https://doi.org/10.1007/s11356-014-3760-4.

[18]

IPCC, 2021. Intergovernmental Panel on Climate Change. In: Climate Change 2021:the Physical Science Basis. Cambridge University Press, Cambridge, UK.

[19]

Jiang, H., Thobakgale, T., Li, Y.Z., Liu, L.W., Su, Q.W., Cang, B.F., Bai, C.Y., Li, J.Y., Song, Z., Wu, M.K., Wang, D.C., Cui, J.J., Wei, X.S., Wu, Z.H., 2021. Construction of dominant rice population under dry cultivation by seeding rate and nitrogen rate interaction. Sci. Rep. 11, 7189. https://doi.org/10.1038/s41598-021-86707-z.

[20]

Jiang, Y., Carrijo, D., Huang, S., Chen, J., Balaine, N., Zhang, W., Groenigen, K.J., Linquist, B., 2019. Water management to mitigate the global warming potential of rice systems: A global meta-analysis. Field Crops Res. 234, 47-54. https://doi.org/ 10.1016/j.fcr.2019.02.010.

[21]

Jiang, Y.F., Zhou, M.G., Ke, S.M., Deng, X.X., Li, Y.S., 2024. GSW3.1, a novel gene controlling grain size and weight in rice. Crop J. 12, 796-802. https://doi.org/ 10.1016/j.cj.2024.05.002.

[22]

Jing, L.Q., Wang, J., Shen, S.B., Wang, Y.X., Zhu, J.G., Wang, Y.L., Yang, L.X., 2015. The impact of elevated CO2 and temperature on grain quality of rice grown under open- air field conditions. J. Sci. Food Agric. 96, 3658-3667. https://doi.org/10.1002/jsfa.7545.

[23]

Kimball, B.A., Alonso, R.A.M., Cavaleri, M.A., Reed, S.C., Gonzalez, G., Wood, T.E., 2018. Infrared heater system for warming tropical forest understory plants and soils. Ecol. Evol. 8, 1932-1944. https://doi.org/10.1002/ece3.3780.

[24]

Le, M.J., Roger, P., 2001. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 37, 25-50. https://doi.org/10.1016/S1164- 5563(01)01067-6.

[25]

Li, C.S., Salas, W., Deangelo, B., Rose, S., 2006. Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years. J. Environ. Qual. 35, 1554-1565. https://doi.org/10.2134/ jeq2005.0208.

[26]

Liao, P., Sun, Y.N., Jiang, Y., Zeng, Y.J., Wu, Z.M., Huang, S., 2019. Hybrid rice produces a higher yield and emits less methane. Plant Soil Environ. 65, 549-555. https:// doi.org/10.17221/330/2019-PSE.

[27]

Liu, Y.J., Tang, L., Qiu, X.L., Liu, B., Chang, X.N., Liu, L.L., Zhang, X.H., Cao, W.X., Zhu, Y., 2020. Impacts of 1.5 and 2.0o C global warming on rice production across China. Agric. For. Meteorol. 284, 107900. https://doi.org/10.1016/j.agrformet.2020.107900.

[28]

Lu, M., Zhou, X., Yang, Q., Li, H., Luo, Y., Fang, C., Chen, J., Yang, X., Li, B., 2013. Responses of ecosystem carbon cycle to experimental warming: a meta-analysis. Ecology 94, 726-738. https://doi.org/10.1890/12-0279.1.

[29]

NBSC, 2022. National Bureau of Statistics. China Statistics Press, Beijing, China. https://data.stats.gov.cn.

[30]

Noyce, G.L., Megonigal, J.P., 2020. Biogeochemical and plant trait mechanisms drive enhanced methane emissions in response to whole-ecosystem warming. Biogeosciences 18, 2449-2463. https://doi.org/10.5194/bg-18-2449-2021.

[31]

Qian, H.Y., Zhang, N., Chen, J.J., Chen, C.Q., Hungate, B.A., Ruan, J.M., Huang, S., Cheng, K., Song, Z.W., Hou, P.F., Zhang, B., Zhang, J., Wang, Z., Zhang, X.Y., Li, G.H., Liu, Z.H., Wang, S.H., Zhou, G.Y., Zhang, W.J., Ding, Y.F., Groenigen, V.K.J., Jiang, Y., 2022. Unexpected parabolic temperature dependency of CH 4 emissions from rice paddies. Environ. Sci. Technol. 56, 4871-4881. https://doi.org/10.1021/ acs.est.2c00738.

[32]

Qian, H.Y., Zhu, X.C., Huang, S., Linquist, B., Kuzyakov, Y., Wassmann, R., Minamikawa, K., Martinez, E.M., Yan, X.Y., Zhou, F., Sander, B.O., Zhang, W.J., Shang, Z.Y., Zou, J.W., Zheng, X.H., Li, G.H., Liu, Z.H., Wang, S.H., Ding, Y.F., Groenigen, K.J.V., Jiang, Y., 2023. Greenhouse gas emissions and mitigation in rice agriculture. Nat. Rev. Earth Environ. 4, 716-732. https://doi.org/10.1038/s43017- 023-00482-1.

[33]

Rong, C.Y., Liu, Y.X., Chang, Z.Y., Liu, Z.Y., Ding, Y.F., Ding, C.Q., 2022. Cytokinin oxidase/dehydrogenase family genes exhibit functional divergence and overlap in rice growth and development, especially in control of tillering. J. Exp. Bot. 73, 3552-3568. https://doi.org/10.1093/jxb/erac088.

[34]

Shrestha, S., Mahat, J., Shrestha, J., Madhav, K.C., Paudel, K., 2022. Influence of high- temperature stress on rice growth and development. A review. Heliyon 8, e12651. https://doi.org/10.1016/j.heliyon.2022.e12651.

[35]

Takai, T., 2023. Potential of rice tillering for sustainable food production. J. Exp. Bot. 75, 708-720. https://doi.org/10.1093/jxb/erad422.

[36]

Tokida, T., Fumoto, T., Cheng, W., Matsunami, T., Adachi, M., Katayanagi, N., Matsushima, M., Okawara, Y., Nakamura, H., Okada, M., Sameshima, R., Hasegawa, T., 2010. Effects of free-air CO2 enrichment (FACE) and soil warming on CH4 emission from a rice paddy field: impact assessment and stoichiometric evaluation. Biogeosciences 7, 2639-2653. https://doi.org/10.5194/bg-7-2639-2010.

[37]

Wang, H.Y., Yang, T.T., Chen, J., Bell, S.M., Wu, S.P., Jiang, Y., Sun, Y.N., Zeng, Y.H., Zeng, Y.J., Pan, X.H., Huang, S., 2022. Effects of free-air temperature increase on grain yield and greenhouse gas emissions in a double rice cropping system. Field Crops Res. 281, 108489. https://doi.org/10.1016/j.fcr.2022.108489.

[38]

Wang, Y.L., Zhang, Y.K., Shi, Q.H., Chen, H.Z., Xiang, J., Hu, G.H., Chen, Y.H., Wang, X.D., Wang, J.K., Yi, Z.H., Zhu, D.F., Zhang, Y.P., 2020. Decrement of sugar consumption in rice young panicle under high temperature aggravates spikelet number reduction. Rice Sci. 27, 44-45. https://doi.org/10.1016/ j.rsci.2019.12.005.

[39]

Wu, X.H., Wang, W., Xie, K.J., Yin, C.M., Hou, H.J., Xie, X.L., 2019. Combined effects of straw and water management on CH 4 emissions from rice fields. J. Environ. Manage. 231, 1257-1262. https://doi.org/10.1016/j.jenvman.2018.11.011.

[40]

Xiong, R.Y., Tan, X.M., Yang, T.T., Wang, H.X., Pan, X.H., Zeng, Y.J., Zhang, J., Zeng, Y.H., 2023. Starch multiscale structure and physicochemical property alterations in high-quality indica rice quality and cooked rice texture under different nitrogen panicle fertilizer applications. Int. J. Biol. Macromol. 252, 126455. https:// doi.org/10.1016/j.ijbiomac.2023.126455.

[41]

Xu, X., Liu, X., Li, Y., Ran, Y., Liu, Y., Zhang, Q., Li, Z., He, Y., Xu, J., Di, H., 2017. High temperatures inhibited the growth of soil bacteria and archaea but not that of fungi and altered nitrous oxide production mechanisms from different nitrogen sources in an acidic soil. Soil Biol. Biochem. 107, 168-179. https://doi.org/10.1016/ j.soilbio.2017.01.003.

[42]

Xu, Y.F., Chu, C.C., Yao, S.G., 2021. The impact of high-temperature stress on rice: Challenges and solutions. Crop J. 9, 963-976. https://doi.org/10.1016/j.cj.2021.02.011.

[43]

Yan, X., Akiyama, H., Yagi, K., Akimoto, H., 2009. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 intergovernmental panel on climate change guidelines. Glob. Biogeochem. Cycles 23, GB2002. https://doi.org/10.1029/2008gb003299.

[44]

Yang, H.F., Chen, L.M., Xiong, R.Y., Zeng, Y.H., Jiang, Y., Zhang, J., Zhang, B., Yang, T.T., 2024. Experimental warming increased cooked rice stickiness and rice thermal stability in three major Chinese rice cropping systems. Foods 13, 1605. https:// doi.org/10.3390/foods13111605.

[45]

Yang, T.T., Tan, X.M., Huang, S., Pan, X.H., Shi, Q.H., Zeng, Y.H., Zhang, J., Zeng, Y.H., 2020. Effects of experimental warming on physicochemical properties of indica rice starch in a double rice cropping system. Food Chem. 310, 125981. https://doi.org/ 10.1016/j.foodchem.2019.125981.

[46]

Yang, T.T., Tan, X.M., Huang, S., Pan, X.H., Zeng, Y.H., Zhang, J., Cheng, S.M., Zeng, Y.J., 2023. Grain yield and quality performances of different late-season rice cultivars in response to experimental warming in subtropical China. Front. Plant Sci. 14, 1136564. https://doi.org/10.3389/fpls.2023.1136564.

[47]

Yang, T.T., Xiong, R.Y., Tan, X.Y., Huang, S., Pan, X.H., Guo, L., Zeng, Y.J., Zhang, J., Zeng, Y.H., 2022. The impacts of postanthesis warming on grain yield and quality of double-cropping high-quality indica rice in Jiangxi Province, China. Eur. J. Agron. 139, 126551. https://doi.org/10.1016/j.eja.2022.126551.

[48]

Yang, T.T., Zeng, Y.H., Sun, Y., Zhang, J., Tan, X.M., Zeng, Y.J., Huang, S., Pan, X.H., 2019. Experimental warming reduces fertilizer nitrogen use efficiency in a double rice cropping system. Plant Soil Environ. 65, 483-489. https://doi.org/10.17221/315/2019-PSE.

[49]

Zhang, H., Zhang, J.H., Yang, J.C., 2023a. Improving nitrogen use efficiency of rice crop through an optimized root system and agronomic practices. Crop Environ. 2, 192-201.

[50]

Zhang, L., Wu, F., Xu, Z., Tan, B., Wang, A., Yang, W., 2017. Effects of simulated warming on soil ammonia-oxidizing bacteria and archaea communities in an alpine forest of western Sichuan, China. Acta Ecol. Sin. 37, 85-90. https://doi.org/10.1016/ j.chnaes.2016.12.004.

[51]

Zhang, N., Qian, H.Y., Li, H.X., Tang, J.Q., Yang, T.T., Liu, Z.S., Liu, Y.L., Zhang, B., Ding, Y.F., Jiang, Y., 2023b. Effect of warming on rice yield and methane emissions in a Chinese tropical double-rice cropping system. Agric. Ecosyst. Environ. 348, 108409. https://doi.org/10.1016/j.agee.2023.108409.

[52]

Zhang, N., Wang, L., Wang, X.N., Liu, Z.S., Huang, S., Wang, Z.H., Chen, C.Q., Qian, H.Y., Li, G.H., Liu, Z.H., Ding, Y.F., Zhang, W.J., Jiang, Y., 2024. Effects of warming on greenhouse gas emissions from China's rice paddies. Agric. Ecosyst. Environ. 366, 108953. https://doi.org/10.1016/j.agee.2024.108953.

AI Summary AI Mindmap
PDF

279

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/