Improving photosynthetic efficiency in fluctuating light to enhance yield of C3 and C4 crops

Yu Wang

Crop and Environment ›› 2024, Vol. 3 ›› Issue (4) : 184 -193.

PDF
Crop and Environment ›› 2024, Vol. 3 ›› Issue (4) : 184 -193. DOI: 10.1016/j.crope.2024.06.003
Review article

Improving photosynthetic efficiency in fluctuating light to enhance yield of C3 and C4 crops

Author information +
History +
PDF

Abstract

Photosynthetic adaptations to light fluctuations do not occur instantaneously, leading to reduced carbon gain and lower productivity in agricultural crops. Enhancing the rapidity of photosynthetic responses to these fluctuations could potentially increase carbon assimilation by 13-32%, indicating a substantial opportunity for yield improvement of major crops. Most crops can be categorized into C3 or C4 crops by their photosynthetic pathways. This review provides a comparative overview of the photosynthetic responses of both C3 and C4 crops to light fluctuations, highlighting the unique and shared challenges for these two photosynthetic pathways. In C3 crops, fast adjustments in non-photochemical quenching, stomatal and mesophyll conductance, and Rubisco activation are essential for optimizing photosynthesis under variable light conditions. In contrast, C4 crops, including maize, sorghum, and sugarcane, benefit from their carbon concentration mechanism under high light conditions but face challenges in coordinating the C4 and Calvin-Benson-Bassham cycles. Strategies to enhance the activation of pyruvate phosphate dikinase and Rubisco, as well as to improve electron transport capacity and flexibility, could markedly boost the photosynthetic efficiency and productivity. Through a detailed understanding of the distinct mechanisms involved in C3 and C4 photosynthesis, this review underscores the need for tailored strategies to optimize the photosynthetic efficiency specific to each crop type. Exploring and leveraging these differences is crucial for propelling agricultural productivity forward.

Keywords

C3 photosynthesis / C4 photosynthesis / Photosynthetic induction / PPDK regulatory protein / Rubisco activase / Stomatal conductance

Cite this article

Download citation ▾
Yu Wang. Improving photosynthetic efficiency in fluctuating light to enhance yield of C3 and C4 crops. Crop and Environment, 2024, 3(4): 184-193 DOI:10.1016/j.crope.2024.06.003

登录浏览全文

4963

注册一个新账户 忘记密码

Abbreviations

BSC: bundle sheath cells

CAM: crassulacean acid metabolism

CBB: Calvin-Benson-Bassham

Cyt b6f: cytochrome b6f

FBPase: fructose-1,6-bisphosphatase

GAPDH: glyceraldehyde-3-phosphate dehydrogenase

gbs: bundle sheath conductance

gm: mesophyll conductance

gs: stomatal conductance

Mal: malate

MC: mesophyll cells

M&E: mutase and enolase

NADP-ME: NADP-malic enzyme

NPQ: non-photochemical quenching

NTRC: NADPH-thioredoxin reductase C

OAA: oxaloacetate

PDRP: pyruvate phosphate dikinase regulatory protein

PEP: phosphoenolpyruvate

PEPC: phosphoenolpyruvate carboxylase

PGA: 3-phosphoglycerate

PPDK: pyruvate phosphate dikinase

PRK: phosphoribulose kinase

Pyr: pyruvate

Rca: Rubisco activase

Rubisco: ribulose-1,5-bisphosphate carboxylase/oxygenase

SBPase: sedoheptulose-bisphosphatase

TDL: tunable diode laser

WUE: water ues efficiency

Availability of data and materials

Not applicable.

Authors’ contributions

Y.W.: conception, data curation, investigation, visualization, writing original draft, reviewing, and editing.

Declaration of competing interest

I declare that I have no competing interests.

Acknowledgements

Not applicable.

References

[1]

Acevedo-Siaca, L.G., Coe, R., Quick, W.P., Long, S.P., 2020a. Variation between rice accessions in photosynthetic induction in flag leaves and underlying mechanisms. J. Exp. Bot. 72, 1282-1294.

[2]

Acevedo-Siaca, L.G., Coe, R., Wang, Y., Kromdijk, J., Quick, W.P., Long, S.P., 2020b. Variation in photosynthetic induction between rice accessions and its potential for improving productivity. New Phytol. 227, 1097-1108.

[3]

Armbruster, U., Galvis, V.C., Kunz, H., Strand, D.D., 2017. The regulation of the chloroplast proton motive force plays a key role for photosynthesis in fluctuating light. Curr. Opin. Plant Biol. 37, 56-62.

[4]

Arrivault, S., Obata, T., Szeco'wka, M., Mengin, V., Guenther, M., Hoehne, M., Fernie, A.R., Stitt, M., 2017. Metabolite pools and carbon flow during C4 photosynthesis in maize: 13CO2 labeling kinetics and cell type fractionationJ. Exp. Bot. 68, 283-298.

[5]

Ashton, A.R., Burnell, J.N., Hatch, M.D., 1984. Regulation of C4 photosynthesis: Inactivation of pyruvate, Pi dikinase by ADP-dependent phosphorylation and activation by phosphorolysis. Arch. Biochem. Biophys. 230, 492-503.

[6]

Ball, J.T., Woodrow, I.E., Berry, J.A., 1986. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins, J. (Ed.), Progress in Photosynthesis Research. Springer Dordrecht, Rhode Island, USA, pp.221-224.

[7]

Barbour, M.M., Evans, J.R., Simonin, K.A., von Caemmerer, S., 2016. Online CO2 and H2O oxygen isotope fractionation allows estimation of mesophyll conductance in C4 plants, and reveals that mesophyll conductance decreases as leaves age in both C4 and C3 plants. New Phytol. 210, 875-889.

[8]

Blatt, M.R., 2000. Cellular signaling and volume control in stomatal movements in plants. Annu. Rev. Cell Dev. Biol. 16, 221-241.

[9]

Brown, W.V., 1975. Variations in anatomy, associations, and origins of Kranz tissue. Am. J. Bot. 62, 395-402.

[10]

Budde, R.J.A., Holbrook, G.P., Chollet, R., 1985. Studies on the dark/light regulation of maize leaf pyruvate, orthophosphate dikinase by reversible phosphorylation. Arch. Biochem. Biophys. 242, 283-290.

[11]

Burgess, A.J., Retkute, R., Preston, S.P., Jensen, O.E., Pound, M.P., Pridmore, T.P., Murchie, E.H., 2016. The 4-dimensional plant: effects of wind-induced canopy movement on light fluctuations and photosynthesis. Front. Plant Sci. 7, 1392.

[12]

Burnell, J.N., Hatch, M.D., 1985. Regulation of C4 photosynthesis: purification and properties of the protein catalyzing ADP-mediated inactivation and Pi-mediated activation of pyruvate, Pi dikinase. Arch. Biochem. Biophys. 237, 490-503.

[13]

Carmo-Silva, A.E., Salvucci, M.E., 2013. The regulatory properties of Rubisco activase differ among species and affect photosynthetic induction during light transitions. Plant Physiol. 161, 1645-1655.

[14]

Chastain, C.J., 2010. Structure, function, and post-translational regulation of C4 pyruvate orthophosphate dikinase. In: Raghavendra, A., Sage, R. (Eds.), C4 Photosynthesis and Related CO2 Concentrating Mechanisms. Springer, Dordrecht, Netherlands, pp. 301-315.

[15]

Chastain, C.J., Baird, L.M., Walker, M.T., Bergman, C.C., Novbatova, G.T., Mamani- Quispe, C.S., Burnell, J.N., 2018. Maize leaf PPDK regulatory protein isoform-2 is specific to bundle sheath chloroplasts and paradoxically lacks a Pi-dependent PPDK activation activity. J. Exp. Bot. 69, 1171-1181.

[16]

Chazdon, R.L., 1988. Sunflecks and their importance to forest understorey plants. In: Begon, M., Fitter, A.H., Ford, E.D., Macfadyen, A. (Eds.), Advances in Ecological Research. Elsevier, San Diego, USA, pp.1-63.

[17]

Chazdon, R.L., Pearcy, R.W., 1986. Photosynthetic responses to light variation in rainforest species: II. Carbon gain and photosynthetic efficiency during lightflecks. Oecologia 69, 524-531.

[18]

Cleland, W.W., Andrews, T.J., Gutteridge, S., Hartman, F.C., Lorimer, G.H., 1998. Mechanism of rubisco: the carbamate as general base. Chem. Rev. 98, 549-562.

[19]

Cousins, A.B., Mullendore, D.L., Sonawane, B.V., 2020. Recent developments in mesophyll conductance in C3, C4, and crassulacean acid metabolism plants. Plant J. 101, 816-830.

[20]

Cubas, L.A., Vath, R.L., Bernardo, E.L., Sales, C.R.G., Burnett, A.C., Kromdijk, J., 2023. Activation of CO2 assimilation during photosynthetic induction is slower in C4 than in C3 photosynthesis in three phylogenetically controlled experiments. Front. Plant Sci. 13, 1091115.

[21]

Danila, F.R., Thakur, V., Chatterjee, J., Bala, S., Coe, R.A., Acebron, K., Furbank, R.T., von Caemmerer, S., Quick, W.P., 2021. Bundle sheath suberisation is required for C4 photosynthesis in a Setaria viridis mutant. Commun. Biol. 4, 254.

[22]

De Souza, A.P., Burgess, S.J., Doran, L., Hansen, J., Manukyan, L., Maryn, N., Gotarkar, D., Leonelli, L., Niyogi, K.K., Long, S.P., 2022. Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection. Science 377, 851-854.

[23]

De Souza, A.P., Wang, Y., Orr, D.J., Carmo-Silva, E., Long, S.P., 2020. Photosynthesis across African cassava germplasm is limited by Rubisco and mesophyll conductance at steady-state, but by stomatal conductance in fluctuating light. New Phytol. 225, 2498-2512.

[24]

Deans, R.M., Farquhar, G.D., Busch, F.A., 2019. Estimating stomatal and biochemical limitations during photosynthetic induction. Plant Cell Environ. 42, 3227-3240.

[25]

Dengler, N.G., Dengler, R.E., Donnelly, P.M., Hattersley, P.W., 1994. Quantitative leaf anatomy of C3 and C4 grasses (Poaceae): bundle sheath and mesophyll surface area relationships. Ann. Bot. 73, 241-255.

[26]

Drake, P.L., Froend, R.H., Franks, P.J., 2013. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. J. Exp. Bot. 64, 495-505.

[27]

Edwards, G., Walker, D., 1983. C3, C4: Mechanisms, cellular and environmental regulation of photosynthesis. University of California Press, California, USA.

[28]

Ermakova, M., Lopez-Calcagno, P.E., Raines, C.A., Furbank, R.T., von Caemmerer, S., 2019. Overexpression of the Rieske FeS protein of the cytochrome b6f complex increases C4 photosynthesis in Setaria viridis. Commun. Biol. 2, 314.

[29]

Ermakova, M., Woodford, R., Taylor, Z., Furbank, R.T., Belide, S., von Caemmerer, S., 2023. Faster induction of photosynthesis increases biomass and grain yield in glasshouse-grown transgenic Sorghum bicolor overexpressing Rieske FeS. Plant Biotechnol. J. 21, 1206-1216.

[30]

Evans, J.R., 2021. Mesophyll conductance: walls, membranes and spatial complexity. New Phytol. 229, 1864-1876.

[31]

Evans, J.R., von Caemmerer, S., 1996. Carbon dioxide diffusion inside leaves. Plant Physiol. 110, 339-346.

[32]

Evans, J.R., von Caemmerer, S., 2013. Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco. Plant Cell Environ. 36, 745-756.

[33]

Eyland, D., van Wesemael, J., Lawson, T., Carpentier, S., 2021. The impact of slow stomatal kinetics on photosynthesis and water use efficiency under fluctuating light. Plant Physiol. 186, 998-1012.

[34]

Farquhar, G.D., Sharkey, T.D., 1982. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 33, 317-345.

[35]

Flexas, J., Barbour, M.M., Brendel, O., Cabrera, H.M., Carriquí, M., Díaz-Espejo, A., Douthe, C., Dreyer, E., Ferrio, J.P., Gago, J., Galléa, A., Galmés, J., Kodama, N., Medrano, H., Niinemets, Ü., Peguero-Pinaa, J.J., Pou, A., Ribas-Carbó, A., Tom'as, M., Tosens, T., Warren, C.R., 2012. Mesophyll diffusion conductance to CO2: An unappreciated central player in photosynthesis. Plant Sci. 193-194, 70-84.

[36]

Flexas, J., Díaz-Espejo, A., Conesa, M.A., Coopman, R.E., Douthe, C., Gago, J., Gallé, A., Galmés, J., Medrano, H., Ribas-Carbó, M., Tomas, M., Niinemets, Ü., 2016. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ. 39, 965-982.

[37]

Flexas, J., Ribas-Carbó, M., Diaz-Espejo, A., Galmés, J., Medrano, H., 2008. Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ. 31, 602-621.

[38]

Flexas, J., Scoffoni, C., Gago, J., Sack, L., 2013. Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. J. Exp. Bot. 64, 3965-3981.

[39]

Fu, X., Walker, B.J., 2023. Dynamic response of photorespiration in fluctuating light environments. J. Exp. Bot. 74, 600-611.

[40]

Fukayama, H., Ueguchi, C., Nishikawa, K., Katoh, N., Ishikawa, C., Masumoto, C., Hatanaka, T., Misoo, S., 2012. Overexpression of Rubisco activase decreases the photosynthetic CO2 assimilation rate by reducing Rubisco content in rice leaves. Plant Cell Physiol. 53, 976-986.

[41]

Gago, J., Daloso, D.M., Carriquí, M., Nadal, M., Morales, M., Araújo, W.L., Nunes-Nesi, A., Flexas, J., 2020. Mesophyll conductance: the leaf corridors for photosynthesis. Biochem. Soc. Trans. 48, 429-439.

[42]

Garcia-Molina, A., Leister, D., 2020. Accelerated relaxation of photoprotection impairs biomass accumulation in Arabidopsis. Nat Plants 6., 9-12.

[43]

Geigenberger, P., Thorm€ahlen, I., Daloso, D.M., Fernie, A.R., 2017. The unprecedented versatility of the plant thioredoxin system. Trends Plant Sci. 22, 249-262.

[44]

Gjindali, A., Herrmann, H.A., Schwartz, J., Johnson, G.N., Calzadilla, P.I., 2021. A holistic approach to study photosynthetic acclimation responses of plants to fluctuating light. Front. Plant Sci. 12, 668512.

[45]

Hatch, M.D., 1978. Regulation of enzymes in C4 photosynthesis. In: Horecker, B.L., Stadtman, E.R. (Eds.), Current Topics in Cellular Regulation. Academic Press, San Diego, USA, pp.1-27.

[46]

Hatch, M.D., 1987. C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim. Biophys. Acta-Rev. Bioenerg. 895, 81-106.

[47]

Henderson, S.A., von Caemmerer, S., Farquhar, G.D., 1992. Short-term measurements of carbon isotope discrimination in several C4 species. Funct. Plant Biol. 19, 263-285.

[48]

Heyno, E., Ermakova, M., Lopez-Calcagno, P.E., Woodford, R., Brown, K.L., Matthews, J.S.A., Osmond, B., Raines, C.A., von Caemmerer, S., 2022. Rieske FeS overexpression in tobacco provides increased abundance and activity of cytochrome b6f. Physiol. Plant. 174, e13803.

[49]

Howard, T.P., Lloyd, J.C., Raines, C.A., 2011. Inter-species variation in the oligomeric states of the higher plant Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase. J. Exp. Bot. 62, 3799-3805.

[50]

Howard, T.P., Metodiev, M., Lloyd, J.C., Raines, C.A., 2008. Thioredoxin-mediated reversible dissociation of a stromal multiprotein complex in response to changes in light availability. Proc. Natl. Acad. Sci. U. S. A. 105, 4056-4061.

[51]

Jenkins, C.L.D., Furbank, R.T., Hatch, M.D., 1989. Mechanism of C4 photosynthesis: a model describing the inorganic carbon pool in bundle sheath cells. Plant Physiol. 91, 1372-1381.

[52]

Kaiser, E., Correa Galvis, V., Armbruster, U., 2019. Efficient photosynthesis in dynamic light environments: a chloroplast's perspective. Biochem. J. 476, 2725-2741.

[53]

Kaiser, E., Kromdijk, J., Harbinson, J., Heuvelink, E., Marcelis, L.F.M., 2017. Photosynthetic induction and its diffusional, carboxylation and electron transport processes as affected by CO2 partial pressure, temperature, air humidity and blue irradiance. Ann. Bot. 119, 191-205.

[54]

Kaiser, E., Morales, A., Harbinson, J., Heuvelink, E., Marcelis, L.F.M., 2020. High stomatal conductance in the tomato Flacca mutant allows for faster photosynthetic induction. Front. Plant Sci. 11, 1317.

[55]

Kaiser, E., Morales, A., Harbinson, J., Heuvelink, E., Prinzenberg, A.E., Marcelis, L.F.M., 2016. Metabolic and diffusional limitations of photosynthesis in fluctuating irradiance in Arabidopsis thaliana. Sci. Rep. 6, 31252.

[56]

Kaiser, E., Morales, A., Harbinson, J., Kromdijk, J., Heuvelink, E., Marcelis, L.F.M., 2015. Dynamic photosynthesis in different environmental conditions. J. Exp. Bot. 66, 2415-2426.

[57]

Khaipho-Burch, M., Cooper, M., Crossa, J., de Leon, N., Holland, J., Lewis, R., McCouch, S., Murray, S.C., Rabbi, I., Ronald, P., Ross-Ibarra, J., Weigel, D., Buckler, E.S., 2023. Scale up trials to validate modified crops’ benefits. Nature 621, 470-473.

[58]

Kim, S.Y., Slattery, R.A., Ort, D.R., 2021. A role for differential Rubisco activase isoform expression in C4 bioenergy grasses at high temperature. GCB Bioenergy 13, 211-223.

[59]

Kimura, H., Hashimoto-Sugimoto, M., Iba, K., Terashima, I., Yamori, W., 2020. Improved stomatal opening enhances photosynthetic rate and biomass production in fluctuating light. J. Exp. Bot. 71, 2339-2350.

[60]

Kolbe, A.R., Cousins, A.B., 2018. Mesophyll conductance in Zea mays responds transiently to CO2 availability: implications for transpiration efficiency in C4 crops. New Phytol. 217, 1463-1474.

[61]

Kromdijk, J., Głowacka, K., Leonelli, L., Gabilly, S.T., Iwai, M., Niyogi, K.K., Long, S.P., 2016. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354, 857-861.

[62]

Kromdijk, J., Ubierna, N., Cousins, A.B., Griffiths, H., 2014. Bundle-sheath leakiness in C4 photosynthesis: a careful balancing act between CO2 concentration and assimilation. J. Exp. Bot. 65, 3443-3457.

[63]

Kub'asek, J., Urban, O., S-antrů-cek, J., 2013. C4 plants use fluctuating light less efficiently than do C3 plants: a study of growth, photosynthesis and carbon isotope discrimination. Physiol. Plant. 149, 528-539.

[64]

Kusumi, K., Hirotsuka, S., Kumamaru, T., Iba, K., 2012. Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein. J. Exp. Bot. 63, 5635-5644.

[65]

Laing, W.A., Christeller, J.T., 1976. A model for the kinetics of activation and catalysis of ribulose 1,5-bisphosphate carboxylase. Biochem. J. 159, 563-570.

[66]

Lawson, T., Blatt, M.R., 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol. 164, 1556-1570.

[67]

Lawson, T., Matthews, J., 2020. Guard cell metabolism and stomatal function. Annu. Rev. Plant Biol. 71, 273-302.

[68]

Lee, M., Boyd, R.A., Ort, D.R., 2022. The photosynthetic response of C3 and C4 bioenergy grass species to fluctuating light. GCB Bioenergy 14, 37-53.

[69]

Leegood, R.C., 1985. The intercellular compartmentation of metabolites in leaves of Zea mays L. Planta 164, 163-171.

[70]

Leegood, R.C., 2002. C4 photosynthesis: principles of CO2 concentration and prospects for its introduction into C3 plants. J. Exp. Bot. 53, 581-590.

[71]

Lehretz, G.G., Schneider, A., Leister, D., Sonnewald, U., 2022. High non-photochemical quenching of VPZ transgenic potato plants limits CO2 assimilation under high light conditions and reduces tuber yield under fluctuating light. J. Integr. Plant Biol. 64, 1821-1832.

[72]

Li, Y., Luo, J., Liu, P., Zhang, Z., 2021. C4 species utilize fluctuating light less efficiently than C3 species. Plant Physiol. 187, 1288-1291.

[73]

Liu, T., Barbour, M.M., Yu, D., Rao, S., Song, X., 2022. Mesophyll conductance exerts a significant limitation on photosynthesis during light induction. New Phytol. 233, 360-372.

[74]

Long, S.P., Humphries, S., Falkowski, P.G., 1994. Photoinhibition of photosynthesis in nature. Annu. Rev. Plant Biol. 45, 633-662.

[75]

Long, S.P., Marshall-Colon, A., Zhu, X., 2015. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161, 56-66.

[76]

Long, S.P., Taylor, S.H., Burgess, S.J., Carmo-Silva, E., Lawson, T., De Souza, A.P., Leonelli, L., Wang, Y., 2022. Into the shadows and back into sunlight: photosynthesis in fluctuating light. Annu. Rev. Plant Biol. 73, 617-648.

[77]

Longstreth, D.J., Hartsock, T.L., Nobel, P.S., 1980. Mesophyll cell properties for some C3 and C4 species with high photosynthetic rates. Physiol. Plant. 48, 494-498.

[78]

López-Calcagno, P.E., Brown, K.L., Simkin, A.J., Fisk, S.J., Vialet-Chabrand, S., Lawson, T., Raines, C.A., 2020. Stimulating photosynthetic processes increases productivity and water-use efficiency in the field. Nat. Plants 6, 1054-1063.

[79]

Lorimer, G.H., 1981. The carboxylation and oxygenation of ribulose 1,5-bisphosphate: the primary events in photosynthesis and photorespiration. Annu. Rev. Plant Physiol. 32, 349-382.

[80]

Marri, L., Zaffagnini, M., Collin, V., Issakidis-Bourguet, E., Lemaire, S.D., Pupillo, P., Sparla, F., Miginiac-Maslow, M., Trost, P., 2009. Prompt and easy activation by specific thioredoxins of Calvin cycle enzymes of Arabidopsis thaliana associated in the GAPDH/CP12/PRK supramolecular complex. Mol. Plant 2, 259-269.

[81]

McAusland, L., Vialet-Chabrand, S., Davey, P., Baker, N.R., Brendel, O., Lawson, T., 2016. Effects of kinetics of light-induced stomatal responses on photosynthesis and water- use efficiency. New Phytol. 211, 1209-1220.

[82]

Morales, A., Kaiser, E., 2020. Photosynthetic acclimation to fluctuating irradiance in plants. Front. Plant Sci. 11, 268.

[83]

Mott, K.A., Woodrow, I.E., 2000. Modelling the role of Rubisco activase in limiting non- steady-state photosynthesis. J. Exp. Bot. 51, 399-406.

[84]

Ogée, J., Wingate, L., Genty, B., 2018. Estimating mesophyll conductance from measurements of C18OO photosynthetic discrimination and carbonic anhydrase activity. Plant Physiol. 178, 728-752.

[85]

Om, K., Arias, N.N., Jambor, C.C., MacGregor, A., Rezachek, A.N., Haugrud, C., Kunz, H., Wang, Z., Huang, P., Zhang, Q., Rosnow, J., Brutnell, T.P., Cousins, A.B., Chastain, C.J., 2022. Pyruvate, phosphate dikinase regulatory protein impacts light response of C4 photosynthesis in Setaria viridis. Plant Physiol. 190, 1117-1133.

[86]

Osterhout, W.J.V., Haas, A.R.C., 1918. Dynamical aspects of photosynthesis. Proc. Natl. Acad. Sci. U. S. A. 4, 85-91.

[87]

Ozeki, K., Miyazawa, Y., Sugiura, D., 2022. Rapid stomatal closure contributes to higher water use efficiency in major C4 compared to C3 Poaceae crops. Plant Physiol. 189, 188-203.

[88]

Papanatsiou, M., Petersen, J., Henderson, L., Wang, Y., Christie, J.M., Blatt, M.R., 2019. Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth. Science 363, 1456-1459.

[89]

Pearcy, R.W., 1990. Sunflecks and photosynthesis in plant canopies. Annu. Rev. Plant Biol. 41, 421-453.

[90]

Pearcy, R.W., Chazdon, R.L., Gross, L.J., Mott, K.A., 1994. Photosynthetic utilization of sunflecks: a temporally patchy resource on a time scale of seconds to minutes. In: Caldwell, M.M., Pearcy, R.W. (Eds.), Exploitation of Environmental Heterogeneity by Plants. Academic Press, San Diego, USA, pp.175-208.

[91]

Pearcy, R.W., Krall, J.P., Sassenrath-Cole, G.F., 1996. Photosynthesis in fluctuating light environments. In: Baker, N.R. (Ed.), Photosynthesis and the Environment. Springer, Dordrecht, Netherlands, pp. 321-346.

[92]

Pengelly, J.J.L., Sirault, X.R.R., Tazoe, Y., Evans, J.R., Furbank, R.T., von Caemmerer, S., 2010. Growth of the C4 dicot Flaveria bidentis: photosynthetic acclimation to low light through shifts in leaf anatomy and biochemistry. J. Exp. Bot. 61, 4109-4122.

[93]

Pérez-Ruiz, J.M., Naranjo, B., Ojeda, V., Guinea, M., Cejudo, F.J., 2017. NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus. Proc. Natl. Acad. Sci. U. S. A. 114, 12069-12074.

[94]

Pons, T.L., Flexas, J., von Caemmerer, S., Evans, J.R., Genty, B., Ribas-Carbó, M., Brugnoli, E., 2009. Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. J. Exp. Bot. 60, 2217-2234.

[95]

Portis, A.R., Li, C., Wang, D., Salvucci, M.E., 2008. Regulation of Rubisco activase and its interaction with Rubisco. J. Exp. Bot. 59, 1597-1604.

[96]

Qiao, M., Zhang, Y., Liu, L., Shi, L., Ma, Q., Chow, W.S., Jiang, C., 2021. Do rapid photosynthetic responses protect maize leaves against photoinhibition under fluctuating light? Photosynth. Res. 149, 57-68.

[97]

Qu, Y., Sakoda, K., Fukayama, H., Kondo, E., Suzuki, Y., Makino, A., Terashima, I., Yamori, W., 2021. Overexpression of both Rubisco and Rubisco activase rescues rice photosynthesis and biomass under heat stress. Plant Cell Environ. 44, 2308-2320.

[98]

Robinson, S.P., Portis, A.R., 1988. Involvement of stromal ATP in the light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase in intact isolated chloroplasts. Plant Physiol. 86, 293-298.

[99]

Sage, R.F., 2004. The evolution of C4 photosynthesis. New Phytol. 161, 341-370.

[100]

Sage, R.F., Khoshravesh, R., Sage, T.L., 2014. From proto-Kranz to C4 Kranz: building the bridge to C4 photosynthesis. J. Exp. Bot. 65, 3341-3356.

[101]

Sage, R.F., Sage, T.L., Kocacinar, F., 2012. Photorespiration and the evolution of C4 photosynthesis. Annu. Rev. Plant Biol. 63, 19-47.

[102]

Sakoda, K., Yamori, W., Groszmann, M., Evans, J.R., 2021. Stomatal, mesophyll conductance, and biochemical limitations to photosynthesis during induction. Plant Physiol. 185, 146-160.

[103]

Sakoda, K., Yamori, W., Shimada, T., Sugano, S.S., Hara-Nishimura, I., Tanaka, Y., 2020. Higher stomatal density improves photosynthetic induction and biomass production in Arabidopsis under fluctuating light. Front. Plant Sci. 11, 589603.

[104]

Salvucci, M.E., Werneke, J.M., Ogren, W.L., Portis, A.R., 1987. Purification and species distribution of Rubisco activase. Plant Physiol. 84, 930-936.

[105]

Scho€ttler, M.A., Tóth, S.Z., Boulouis, A., Kahlau, S., 2015. Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. J. Exp. Bot. 66, 2373-2400.

[106]

Simkin, A.J., López-Calcagno, P.E., Raines, C.A., 2019. Feeding the world: improving photosynthetic efficiency for sustainable crop production. J. Exp. Bot. 70, 1119-1140.

[107]

Simkin, A.J., McAusland, L., Lawson, T., Raines, C.A., 2017. Overexpression of the RieskeFeS protein increases electron transport rates and biomass yield. Plant Physiol. 175, 134-145.

[108]

Slattery, R.A., Ort, D.R., 2015. Photosynthetic energy conversion efficiency: setting a baseline for gauging future improvements in important food and biofuel crops. Plant Physiol. 168, 383-392.

[109]

Slattery, R.A., Walker, B.J., Weber, A.P.M., Ort, D.R., 2018. The impacts of fluctuating light on crop performance. Plant Physiol. 176, 990-1003.

[110]

Soleh, M.A., Tanaka, Y., Nomoto, Y., Iwahashi, Y., Nakashima, K., Fukuda, Y., Long, S.P., Shiraiwa, T., 2016. Factors underlying genotypic differences in the induction of photosynthesis in soybean [Glycine max (L.) Merr.]. Plant Cell Environ. 39, 685-693.

[111]

South, P.F., Cavanagh, A.P., Liu, H.W., Ort, D.R., 2019. Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science 363, eaat9077.

[112]

Stitt, M., Heldt, H.W., 1985. Generation and maintenance of concentration gradients between the mesophyll and bundle sheath in maize leaves. Biochim. Biophys. Acta- Bioenerg. 808, 400-414.

[113]

Stitt, M., Zhu, X., 2014. The large pools of metabolites involved in intercellular metabolite shuttles in C4 photosynthesis provide enormous flexibility and robustness in a fluctuating light environment. Plant Cell Environ. 37, 1985-1988.

[114]

Suganami, M., Suzuki, Y., Tazoe, Y., Yamori, W., Makino, A., 2021. Co-overproducing Rubisco and Rubisco activase enhances photosynthesis in the optimal temperature range in rice. Plant Physiol. 185, 108-119.

[115]

Tanaka, Y., Adachi, S., Yamori, W., 2019. Natural genetic variation of the photosynthetic induction response to fluctuating light environment. Curr. Opin. Plant Biol. 49, 52-59.

[116]

Taylor, S.H., Gonzalez-Escobar, E., Page, R., Parry, M.A.J., Long, S.P., Carmo-Silva, E., 2022. Faster than expected Rubisco deactivation in shade reduces cowpea photosynthetic potential in variable light conditions. Nat. Plants 8, 118-124.

[117]

Taylor, S.H., Long, S.P., 2017. Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160543.

[118]

Ubierna, N., Gandin, A., Boyd, R.A., Cousins, A.B., 2017. Temperature response of mesophyll conductance in three C4 species calculated with two methods: 18O discrimination and in vitro Vpmax. New Phytol. 214, 66-80.

[119]

Usuda, H., Ku, M.S.B., Edwards, G.E., 1984. Activation of NADP-malate dehydrogenase, pyruvate, Pi dikinase, and fructose 1,6-bisphosphatase in relation to photosynthetic rate in maize. Plant Physiol. 76, 238-243.

[120]

van Dijk, M., Morley, T., Rau, M.L., Saghai, Y., 2021. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010-2050. Nat. Food 2, 494-501.

[121]

Vialet-Chabrand, S.R.M., Matthews, J.S.A., McAusland, L., Blatt, M.R., Griffiths, H., Lawson, T., 2017. Temporal dynamics of stomatal behavior: modeling and implications for photosynthesis and water use. Plant Physiol. 174, 603-613.

[122]

von Caemmerer, S., 2000. Biochemical Models of Leaf Photosynthesis. CSIRO Publishing, Clayton South, Australia.

[123]

von Caemmerer, S., Furbank, R.T., 2003. The C4 pathway: an efficient CO2 pump. Photosynth. Res. 77, 191-207.

[124]

Wang, Y., Bräutigam, A., Weber, A.P.M., Zhu, X., 2014a. Three distinct biochemical subtypes of C4 photosynthesis? A modelling analysis. J. Exp. Bot. 65, 3567-3578.

[125]

Wang, Y., Burgess, S.J., de Becker, E.M., Long, S.P., 2020. Photosynthesis in the fleeting shadows: an overlooked opportunity for increasing crop productivity? Plant J. 101, 874-884.

[126]

Wang, Y., Chan, K.X., Long, S.P., 2021. Towards a dynamic photosynthesis model to guide yield improvement in C4 crops. Plant J. 107, 343-359.

[127]

Wang, Y., Long, S.P., Zhu, X., 2014b. Elements required for an efficient NADP-malic enzyme type C4 photosynthesis. Plant Physiol. 164, 2231-2246.

[128]

Wang, Y., Stutz, S.S., Bernacchi, C.J., Boyd, R.A., Ort, D.R., Long, S.P., 2022. Increased bundle-sheath leakiness of CO2 during photosynthetic induction shows a lack of coordination between the C4 and C3 cycles. New Phytol. 236, 1661-1675.

[129]

WHO (World Health Organization), 2020. Transforming food systems for affordable healthy diets. Food and Agriculture Organization of the United Nations, Rome, Italy.

[130]

Xiong, D., Douthe, C., Flexas, J., 2018. Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species. Plant Cell Environ. 41, 436-450.

[131]

Yamori, W., Masumoto, C., Fukayama, H., Makino, A., 2012. Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature. Plant J. 71, 871-880.

[132]

Yin, X., Struik, P.C., 2015. Constraints to the potential efficiency of converting solar radiation into phytoenergy in annual crops: from leaf biochemistry to canopy physiology and crop ecology. J. Exp. Bot. 66, 6535-6549.

[133]

Yin, X., Sun, Z., Struik, P.C., van der Putten, P.E.L., van Ieperen, W., Harbinson, J., 2011. Using a biochemical C4 photosynthesis model and combined gas exchange and chlorophyll fluorescence measurements to estimate bundle-sheath conductance of maize leaves differing in age and nitrogen content. Plant Cell Environ. 34, 2183-2199.

[134]

Yin, X., van der Putten, P.E.L., Driever, S.M., Struik, P.C., 2016. Temperature response of bundle-sheath conductance in maize leaves. J. Exp. Bot. 67, 2699-2714.

[135]

Yoon, D., Ishiyama, K., Suganami, M., Tazoe, Y., Watanabe, M., Imaruoka, S., Ogura, M., Ishida, H., Suzuki, Y., Obara, M., Mae, T., Makino, A., 2020. Transgenic rice overproducing Rubisco exhibits increased yields with improved nitrogen-use efficiency in an experimental paddy field. Nat. Food 1, 134-139.

[136]

Yoshida, K., Hisabori, T., 2016. Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability. Proc. Natl. Acad. Sci. U. S. A. 113, E3967-E3976.

[137]

Yoshida, K., Hisabori, T., 2018. Determining the rate-limiting step for light-responsive redox regulation in chloroplasts. Antioxidants 7, 153.

[138]

Zeng, Z., Wang, X., Zhang, S., Huang, W., 2023. Mesophyll conductance limits photosynthesis in fluctuating light under combined drought and heat stresses. Plant Physiol. 194, 1498-1511.

[139]

Zhang, N., Kallis, R.P., Ewy, R.G., Portis, A.R., 2002. Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform. Proc. Natl. Acad. Sci. U. S. A. 99, 3330-3334.

[140]

Zhang, N., Portis, A.R., 1999. Mechanism of light regulation of Rubisco: A specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin-f. Proc. Natl. Acad. Sci. U. S. A. 96, 9438-9443.

[141]

Zhu, G., Jensen, R.G., 1991. Fallover of ribulose 1,5-bisphosphate carboxylase/oxygenase activity: decarbamylation of catalytic sites depends on pH. Plant Physiol. 97, 1354-1358.

[142]

Zhu, X., Long, S.P., Ort, D.R., 2008. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr. Opin. Biotechnol. 19, 153-159.

[143]

Zhu, X., Long, S.P., Ort, D.R., 2010. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 61, 235-261.

[144]

Zhu, X., Ort, D.R., Whitmarsh, J., Long, S.P., 2004. The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. J. Exp. Bot. 55, 1167-1175.

AI Summary AI Mindmap
PDF

283

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/