Variability in the responses of rice ecotypes to elevated CO2 based on data from FACE studies in China and Japan: Implications for climate change adaptation

Weilu Wang , Xiaowu Yan , Yunxia Han , Weiyang Zhang , Hao Zhang , Lijun Liu

Crop and Environment ›› 2024, Vol. 3 ›› Issue (4) : 171 -183.

PDF
Crop and Environment ›› 2024, Vol. 3 ›› Issue (4) : 171 -183. DOI: 10.1016/j.crope.2024.06.002
Research article

Variability in the responses of rice ecotypes to elevated CO2 based on data from FACE studies in China and Japan: Implications for climate change adaptation

Author information +
History +
PDF

Abstract

Elevated CO2 increases rice yields, and the response level varies across locations and genotypes. Previous analyses of genotypic variations from diverse Free-Air CO2 Enrichment (FACE) studies lacked specificity, limiting their applicability in simulating the responses of crop growth to elevated CO2. Using meta-analysis approach and the ORYZA (v3) model with historical and projected climatic data, this study evaluated the differences in the responses of rice ecotypes to elevated CO2 and identified adaptive measures. Meta-analytical findings indicated that Chinese inbred indica (indicai) and hybrid indica (indicah) rice exhibited comparable yield response rates (28.4% and 31.1%, respectively) to elevated CO2, surpassing those of Chinese japonica rice and Japanese indicai and japonica rice. Achieving higher adaptation to elevated CO2, exemplified by Chinese indicah rice, necessitates the consideration of balanced yield components, with individual contributions to yield responses ranging from 9.8% to 36.2%. This study highlighted the susceptibility of japonica rice to adverse effects of maximum temperatures on yield component responses to elevated CO2 compared to indicai or indicah rice. Strategic adjustments in sowing dates can enhance rice production under climate change, with high-response genotypes benefiting more from optimal sowing periods. Furthermore, for genotypes with less responsiveness to elevated CO2, augmenting nitrogen application in conjunction with sowing date adjustments was beneficial for yield optimization. This research not only advances our understanding of the diverse adaptation strategies of rice genotypes under varying climatic conditions but also enhances the precision of crop growth simulations by accounting for the varied responses to CO2 enrichment. These insights are pivotal for developing targeted breeding and management practices aimed at enhancing climate resilience in rice production.

Keywords

Climate adaptation / Elevated CO2 / FACE / ORYZA model / Rice ecotypes / Yield and yield components

Cite this article

Download citation ▾
Weilu Wang, Xiaowu Yan, Yunxia Han, Weiyang Zhang, Hao Zhang, Lijun Liu. Variability in the responses of rice ecotypes to elevated CO2 based on data from FACE studies in China and Japan: Implications for climate change adaptation. Crop and Environment, 2024, 3(4): 171-183 DOI:10.1016/j.crope.2024.06.002

登录浏览全文

4963

注册一个新账户 忘记密码

Abbreviations

Not applicable.

Availability of data and materials

Data will be shared upon request by the readers.

Authors’ contributions

W.W.: conceptualization, formal analysis, software, and writing of original draft; X.Y. and Y.H.: data curation; W.Z. and H.Z.: writing, reviewing, and editing; L.L.: conceptualization, funding acquisition, supervision, writing, reviewing, and editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Key Research and development Program of China (2022YFD2300304), the National Natural Science Foundation of China (32201888 and 32272197), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.crope.2024.06.002.

References

[1]

Ainsworth, E.A., Long, S.P., 2004. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351-372. https://doi.org/10.1111/j.14698137.2004.01224.x.

[2]

Allen, L.H., Kimball, B.A., Bunce, J.A., Yoshimoto, M., Harazono, Y., Baker, J.T., Boote, K.J., White, J.W., 2020. Fluctuations of CO2 in free-air CO2 enrichment (FACE) depress plant photosynthesis, growth, and yield. Agric. For. Meteorol. 284, 107899. https://doi.org/10.1016/j.agrformet.2020.107899.

[3]

Bagley, J., Rosenthal, D.M., Ruiz-Vera, U.M., Siebers, M.H., Kumar, P., Ort, D.R., Bernacchi, C.J., 2015. The influence of photosynthetic acclimation to rising CO2 and warmer temperatures on leaf and canopy photosynthesis models. Glob. Biogeochem. Cycles 29, 194-206. https://doi.org/10.1002/2014GB004848.

[4]

Bahuguna, R.N., Chaturvedi, A.K., Pal, M., Viswanathan, C., Jagadish, S.V.K., Pareek, A., 2022. Carbon dioxide responsiveness mitigates rice yield loss under high night temperature. Plant Physiol. 188, 285-300. https://doi.org/10.1093/plphys/kiab470.

[5]

Bai, T., Wang, P., Qiu, Y., Zhang, Y., Hu, S., 2023. Nitrogen availability mediates soil carbon cycling response to climate warming: A meta-analysis. Glob. Change Biol. 29, 2608-2626. https://doi.org/10.1111/gcb.16627.

[6]

Bian, J., Ren, G., Han, C., Xu, F., Qiu, S., Tang, J., Zhang, H., Wei, H., Gao, H., 2020. Comparative analysis on grain quality and yield of different panicle weight indica- japonica hybrid rice (Oryza sativa L.) cultivars. J. Integr. Agric. 19, 999-1009. https://doi.org/10.1016/S2095-3119(19)62798-X.

[7]

Bouman, B.A.M., Kropff, M.J., Tuong, T.P., Wopereis, M.C.S., ten Berge, H., van Laar, H., 2001. ORYZA2000: Modeling Lowland Rice. International Rice Research Institute, Los Ban-os, Philippines.

[8]

Cai, C., Yin, X., He, S., Jiang, W., Si, C., Struik, P.C., Luo, W., Li, G., Xie, Y., Xiong, Y., Pan, G., 2016. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Glob. Change Biol. 22, 856-874. https://doi.org/10.1111/gcb.13065.

[9]

Chen, C.P., Sakai, H., Tokida, T., Usui, Y., Nakamura, H., Hasegawa, T., 2014. Do the rich always become richer? Characterizing the leaf physiological response of the high- yielding rice cultivar Takanari to free-air CO2 enrichment. Plant Cell Physiol. 55, 381-391. https://doi.org/10.1093/pcp/pcu009.

[10]

Chen, E., Huang, X., Tian, Z., Wing, R.A., Han, B., 2019. The genomics of Oryza species provides insights into rice domestication and heterosis. Annu. Rev. Plant Biol. 70, 639-665. https://doi.org/10.1146/annurev-arplant-050718-100320.

[11]

Deng, F., Zhang, C., He, L., Liao, S., Li, Q., Li, B., Zhu, S., Gao, Y., Tao, Y., Zhou, W., Lei, X., Wang, L., Hu, J., Chen, Y., Ren, W., 2022. Delayed sowing date improves the quality of mechanically transplanted rice by optimizing temperature conditions during growth season. Field Crops Res. 281, 108493. https://doi.org/10.1016/j.fcr.2022.108493.

[12]

Deng, N., Grassini, P., Yang, H., Huang, J., Cassman, K.G., Peng, S., 2019. Closing yield gaps for rice self-sufficiency in China. Nat. Commun. 10, 1725. https://doi.org/10.1038/s41467-019-09447-9.

[13]

Deng, N., Ling, X., Sun, Y., Zhang, C., Fahad, S., Peng, S., Cui, K., Nie, L., Huang, J., 2015. Influence of temperature and solar radiation on grain yield and quality in irrigated rice system. Eur. J. Agron. 64, 37-46. https://doi.org/10.1016/j.eja.2014.12.008.

[14]

Ding, Y., Wang, W., Zhuang, Q., Luo, Y., 2020. Adaptation of paddy rice in China to climate change: The effects of shifting sowing date on yield and irrigation water requirement. Agric. Water Manage. 228, 105890. https://doi.org/10.1016/j.agwat.2019.105890.

[15]

Dong, J., Gruda, N., Lam, S.K., Li, X., Duan, Z., 2018. Effects of elevated CO2 on nutritional quality of vegetables: a review. Front. Plant Sci. 9, 924. https://doi.org/10.3389/fpls.2018.00924.

[16]

Gaupp, F., Hall, J., Hochrainer-Stigler, S., Dadson, S., 2020. Changing risks of simultaneous global breadbasket failure. Nat. Clim. Chang. 10, 54-57. https://doi.org/10.1038/s41558-019-0600-z.

[17]

Hasegawa, T., Li, T., Yin, X., Zhu, Y., Boote, K., Baker, J., Bregaglio, S., Buis, S., Confalonieri, R., Fugice, J., Fumoto, T., Gaydon, D., Kumar, S.N., Lafarge, T., Marcaida III, M., Masutomi, Y., Nakagawa, H., Oriol, P., Ruget, F., Singh, U., Tang, L., Tao, F., Wakatsuki, H., Wallach, D., Wang, Y., Wilson, L.T., Yang, L., Yang, Y., Yoshida, H., Zhang, Z., Zhu, J., 2017. Causes of variation among rice models in yield response to CO2 examined with free-air CO2 enrichment and growth chamber experiments. Sci. Rep. 7, 14858. https://doi.org/10.1038/s41598-017-13582-y.

[18]

Hasegawa, T., Sakai, H., Tokida, T., Nakamura, H., Zhu, C., Usui, Y., Yoshimoto, M., Fukuoka, M., Wakatsuki, H., Katayanagi, N., Matsunami, T., Kaneta, Y., Sato, T., Takakai, F., Sameshima, R., Okada, M., Mae, T., Makino, A., 2013. Rice cultivar responses to elevated CO2 at two free-air CO2 enrichment (FACE) sites in Japan. Funct. Plant Biol. 40, 148-159. https://doi.org/10.1071/FP12357.

[19]

Hasegawa, T., Sakai, H., Tokida, T., Usui, Y., Nakamura, H., Wakatsuki, H., Chen, C.P., Ikawa, H., Zhang, G., Nakano, H., Matsushima, M.Y., Hayashi, K., 2019. A high- yielding rice cultivar “Takanari” shows no N constraints on CO2 fertilization. Front. Plant Sci. 10, 361. https://doi.org/10.3389/fpls.2019.00361.

[20]

Hedges, L.V., Gurevitch, J., Curtis, P.S., 1999. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150-1156.

[21]

Hori, K., Suzuki, K., Ishikawa, H., Nonoue, Y., Nagata, K., Fukuoka, S., Tanaka, J., 2021. Genomic regions involved in differences in eating and cooking quality other than Wx and Alk genes between indica and japonica rice cultivars. Rice 14, 8. https://doi.org/10.1186/s12284-020-00447-8.

[22]

Hu, Q., Yan, N., Cui, K., Li, G., Wang, W., Huang, J., Peng, S., 2024. Increased panicle nitrogen application improves rice yield by alleviating high-temperature damage during panicle initiation to anther development. Physiol. Plant. 176, e14230. https://doi.org/10.1111/ppl.14230.

[23]

Hu, S., Wang, Y., Yang, L., 2020. Response of rice yield traits to elevated atmospheric CO2 concentration and its interaction with cultivar, nitrogen application rate and temperature: A meta-analysis of 20 years FACE studies. Sci. Total Environ. 764, 142797. https://doi.org/10.1016/j.scitotenv.2020.1-42797.

[24]

Ji, D., Xiao, W., Sun, Z., Liu, L., Gu, J., Zhang, H., Harrison, M.T., Liu, K., Wang, Z., Wang, W., Yang, J., 2023. Translocation and distribution of carbon-nitrogen in relation to rice yield and grain quality as affected by high temperature at early panicle initiation stage. Rice Sci. 30, 598-612.

[25]

Jing, L., Zhou, N., Lai, S., Wang, Y., Zhu, J., Wang, Y., Yang, L., 2024. Interactions between elevated atmospheric CO2 and temperature on rice yield are highly dependent on growth season temperature. Field Crops Res. 307, 109270. https://doi.org/10.1016/j.fcr.2024.109270.

[26]

Kimball, B.A., 2016. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr. Opin. Plant Biol. 31, 36-43. https://doi.org/10.1016/j.pbi.2016.03.006.

[27]

Kimball, B.A., Kobayashi, K., Bindi, M., 2002. Responses of agricultural crops to free-air CO2 enrichment. Adv. Agron. 77, 293-368. https://doi.org/10.1016/S0065-2113(02)77017-X.

[28]

Lai, J., Zou, Y., Zhang, S., Zhang, X., Mao, L., 2022. glmm.hp: an R package for computing individual effect of predictors in generalized linear mixed models. J. Plant Ecol. 15, 1302-1307. https://doi.org/10.1093/jpe/rtac096.

[29]

Lefcheck, J.S., 2016. piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573-579. https://doi.org/10.1111/2041-210X.12512.

[30]

Li, T., Angeles, O., Marcaida, M., Manalo, E., Manalili, M.P., Radanielson, A., Mohanty, S., 2017. From ORYZA 2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments. Agric. For. Meteorol. 237-238, 246-256. https://doi.org/10.1016/j.agrformet.2017.02.025.

[31]

Liu, D.L., Zeleke, K.T., Wang, B., Macadam, I., Scott, F., Martin, R.J., 2017. Crop residue incorporation can mitigate negative climate change impacts on crop yield and improve water use efficiency in a semiarid environment. Eur. J. Agron. 85, 51-68. https://doi.org/10.1016/j.eja.2017.02.004.

[32]

Liu, D.L., Zuo, H., 2012. Statistical downscaling of daily climate variables for climate change impact assessment over New South Wales, Australia. Clim. Change 115, 629-666. https://doi.org/10.1007/s10584-012-0464-y.

[33]

Liu, H., Yang, L., Wang, Y., Huang, J., Zhu, J., Yunxia, W., Dong, G., Liu, G., 2008. Yield formation of CO2-enriched hybrid rice cultivar Shanyou 63 under fully open-air field conditions. Field Crops Res. 108, 93-100. https://doi.org/10.1016/j.fcr.2008.03.007.

[34]

Loladze, I., 2014. Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. Elife 3, e02245. https://doi.org/10.7554/eLife.02245.

[35]

Long, S.P., Ainsworth, E.A., Leakey, A.D.B., Nösberger, J., Ort, D.R., 2006. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312, 1918-1921. https://doi.org/10.1126/science.1114722.

[36]

Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., Zhou, B., 2021. Climate change 2021:The physical science basis. In: Contribution of Working Group I to the Sixth Aassessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA.

[37]

Pal, R., Mahajan, G., Sardana, V., Chauhan, B.S., 2017. Impact of sowing date on yield, dry matter and nitrogen accumulation, and nitrogen translocation in dry-seeded rice in North-West India. Field Crops Res. 206, 138-148. https://doi.org/10.1016/j.fcr.2017.01.025.

[38]

Pang, J., Zhu, J., Xie, Z., Liu, G., Zhang, Y., Chen, G., Zeng, Q., Cheng, L., 2006. A new explanation of the N concentration decrease in tissues of rice (Oryza sativa L.) exposed to elevated atmospheric pCO2. Environ. Exp. Bot. 57, 98-105. https://doi.org/10.1016/j.envexpbot.2005.04.004.

[39]

Pasuquin, E.M., Eberbach, P.L., Hasegawa, T., Lafarge, T., Harnpichitvitaya, D., Wade, L.J., 2023. Responses to elevated daytime air and canopy temperature during panicle development in four rice genotypes under paddy conditions in large field chambers. Crop Environ. 2, 147-156. https://doi.org/10.1016/j.crope.2023.04.004.

[40]

Sanchez, B., Rasmussen, A., Porter, J.R., 2014. Temperatures and the growth and development of maize and rice: a review. Glob. Change Biol. 20, 408-417. https://doi.org/10.1111/gcb.12389.

[41]

Seneweera, S., Makino, A., Hirotsu, N., Norton, R., Suzuki, Y., 2011. New insight into photosynthetic acclimation to elevated CO2: The role of leaf nitrogen and ribulose- 1,5-bisphosphate carboxylase/oxygenase content in rice leaves. Environ. Exp. Bot. 71, 128-136. https://doi.org/10.1016/j.envexpbot.2010.11.002.

[42]

Sugiura, D., Wang, Y., Kono, M., Mizokami, Y., 2024. Exploring the responses of crop photosynthesis to CO2 elevation at the molecular, physiological, and morphological levels toward increasing crop production. Crop Environ. 3, 75-83. https://doi.org/10.1016/j.crope.2023.11.006.

[43]

Sun, J., Zhang, H., Yin, H., Chen, B., Guo, B., Wei, H., Dai, Q., Wang, S., Chen, X., Jiang, Y., Jiang, M., Du, Y., Xia, Y., 2015. Effects of seeding date on yield, growth period and utilization of temperature and sunshine of mechanical transplanting rice in different ecological regions. Trans. Chin. Soc. Agric. Eng. 31, 113-121 (in Chinese with English abstract).

[44]

Usui, Y., Sakai, H., Tokida, T., Nakamura, H., Nakagawa, H., Hasegawa, T., 2016. Rice grain yield and quality responses to free-air CO2 enrichment combined with soil and water warming. Glob. Change Biol. 22, 1256-1270. https://doi.org/10.1111/gcb.13128.

[45]

Vu, J.C.V., 2005. Acclimation of peanut (Arachis hypogaea L.) leaf photosynthesis to elevated growth CO2 and temperature. Environ. Exp. Bot. 53, 85-95. https://doi.org/10.1016/j.envexpbot.2004.03.006.

[46]

Wang, B., Feng, P., Liu, D.L., O'Leary, G.J., Macadam, I., Waters, C., Asseng, S., Cowie, A., Jiang, T., Xiao, D., Ruan, H., He, J., Yu, Q., 2020. Sources of uncertainty for wheat yield projections under future climate are site-specific. Nat. Food 1, 720-728. https://doi.org/10.1038/s43016-020-00181-w.

[47]

Wang, J., Liu, X., Zhang, X., Smith, P., Li, L., Filley, T.R., Cheng, K., Shen, M., He, Y., Pan, G., 2016. Size and variability of crop productivity both impacted by CO2 enrichment and warming-A case study of 4 year field experiment in a Chinese paddy. Agric. Ecosyst. Environ. 221, 40-49. https://doi.org/10.1016/j.agee.2016.01.028.

[48]

Wang, J., Wang, C., Chen, N., Xiong, Z., Wolfe, D., Zou, J., 2015. Response of rice production to elevated [CO2] and its interaction with rising temperature or nitrogen supply: a meta-analysis. Clim. Change 130, 529-543. https://doi.org/10.1007/s10584-015-1374-6.

[49]

Wang, L., Pedas, P., Eriksson, D., Schjoerring, J.K., 2013. Elevated atmospheric CO2 decreases the ammonia compensation point of barley plants. J. Exp. Bot. 64, 2713-2724. https://doi.org/10.10-93/jxb/ert117.

[50]

Wang, W., Cai, C., Lam, S.K., Liu, G., Zhu, J., 2018a. Elevated CO2 cannot compensate for japonica grain yield losses under increasing air temperature because of the decrease in spikelet density. Eur. J. Agron. 99, 21-29. https://doi.org/10.1016/j.eja.2018.06.005.

[51]

Wang, W., He, J., Wang, Z., Gu, J., Liu, L., Zhang, W., Ziska, L.H., Zhu, J., 2021a. Leaf characteristics of rice cultivars with a stronger yield response to projected increases in CO2 concentration. Physiol. Plant. 171, 416-423. https://doi.org/10.1111/ppl.13246.

[52]

Wang, W., Loladze, I., Wang, J., Han, Y., Gu, J., Zhang, H., Liu, L., Wang, J., Xu, Y., Zhang, W., Wang, Z., Yang, J., 2022. Improving the accuracy of meta-analysis for datasets with missing measures of variance: Elevated [CO2] effect on plant growth as a case study. Sci. Total Environ. 806, 150669. https://doi.org/10.1016/j.scitotenv.2021.150669.

[53]

Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., Li, M., Zheng, T., Fuentes, R.R., Zhang, F., Mansueto, L., Copetti, D., Sanciangco, M., Palis, K.C., Xu, J., Sun, C., Fu, B., Zhang, H., Gao, Y., Zhao, X., Shen, F., Cui, X., Yu, H., Li, Z., Chen, M., Detras, J., Zhou, Y., Zhang, X., Zhao, Y., Kudrna, D., Wang, C., Li, R., Jia, B., Lu, J., He, X., Dong, Z., Xu, J., Li, Y., Wang, M., Shi, J., Li, J., Zhang, D., Lee, S., Hu, W., Poliakov, A., Dubchak, I., Ulat, V.J., Borja, F.N., Mendoza, J.R., Ali, J., Li, J., Gao, Q., Niu, Y., Yue, Z., Naredo, M.E.B., Talag, J., Wang, X., Li, J., Fang, X., Yin, Y., Glaszmann, J., Zhang, J., Li, J., Hamilton, R.S., Wing, R.A., Ruan, J., Zhang, G., Wei, C., Alexandrov, N., McNally, K.L., Li, Z., Leung, H., 2018b. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43-49. https://doi.org/10.1038/s41586-018-0063-9.

[54]

Wang, W., Xu, X., Zhu, C., Gu, J., Zhang, W., Liu, G., Zhu, J., 2019. Elevated CO2-induced changes in cytokinin and nitrogen metabolism are associated with different responses in the panicle architecture of two contrasting rice genotypes. Plant Growth Regul. 89, 119-129. https://doi.org/10.1007/s10725-019-00511-4.

[55]

Wang, W., Yuan, S., Wu, C., Yang, S., Zhang, W., Xu, Y., Gu, J., Zhang, H., Wang, Z., Yang, J., Zhu, J., 2021b. Field experiments and model simulation based evaluation of rice yield response to projected climate change in Southeastern China. Sci. Total Environ. 761, 143206. https://doi.org/10.1016/j.scitotenv.2020.143206.

[56]

Wu, W., Zhou, L., Chien, H., 2021. How product attributes and consumer attitudes affect purchase prices of japonica rice in China. Agric. Environ. Lett. 6, e20038. https://doi.org/10.1002/ael2.20038.

[57]

Xia, L., Lam, S.K., Chen, D., Wang, J., Tang, Q., Yan, X., 2017. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Glob. Change Biol. 23, 1917-1925. https://doi.org/10.1111/gcb.13455.

[58]

Yang, J., Zhang, J., 2010. Crop management techniques to enhance harvest index in rice. J. Exp. Bot. 61, 3177-3189. https://doi.org/10.1093/jxb/erq112.

[59]

Yang, L., Huang, J., Yang, H., Dong, G., Liu, G., Zhu, J., Wang, Y., 2006. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on dry matter production and distribution of rice (Oryza sativa L.). Field Crops Res. 98, 12-19. https://doi.org/10.1016/j.fcr.2005.11.003.

[60]

Yang, L., Wang, Y., Kobayashi, K., Zhu, J., Huang, J., Yang, H., Wang, Y., Dong, G., Liu, G., Han, Y., Shan, Y., Hu, J., Zhou, J., 2008. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on growth, morphology and physiology of rice root at three levels of nitrogen fertilization. Glob. Change Biol. 14, 1844-1853. https://doi.org/10.1111/j.1365-2486.2008.01624.x.

[61]

Yao, Z., Wang, R., Zheng, X., Mei, B., Zhou, Z., Xie, B., Dong, H., Liu, C., Han, S., Xu, Z., Butterbach-Bahl, K., Zhu, J., 2021. Elevated atmospheric CO2 reduces yield-scaled N2O fluxes from subtropical rice systems: Six site-years field experiments. Glob. Change Biol. 27, 327-339 https://doi.org/10.111-1/gcb.15410.

[62]

Yuan, S., Stuart, A.M., Laborte, A.G., Rattalino Edreira, J.I., Dobermann, A., Kien, L.V.N., Thúy, L.T., Paothong, K., Traesang, P., Tint, K.M., San, S.S., Villafuerte, M.Q., Quicho, E.D., Pame, A.R.P., Then, R., Flor, R.J., Thon, N., Agus, F., Agustiani, N., Deng, N., Li, T., Grassini, P., 2022. Southeast Asia must narrow down the yield gap to continue to be a major rice bowl. Nat. Food 3, 217-226. https://doi.org/10.1038/s43016-022-00477-z.

[63]

Zhang, G., Sakai, H., Usui, Y., Tokida, T., Nakamura, H., Zhu, C., Fukuoka, M., Kobayashi, K., Hasegawa, T., 2015. Grain growth of different rice cultivars under elevated CO2 concentrations affects yield and quality. Field Crops Res. 179, 72-80. https://doi.org/10.1016/j.fcr.2015.04.006.

[64]

Zhu, C., Zhu, J., Cao, J., Jiang, Q., Liu, G., Ziska, L.H., 2014. Biochemical and molecular characteristics of leaf photosynthesis and relative seed yield of two contrasting rice cultivars in response to elevated [CO2]. J. Exp. Bot. 65, 6049-6056. https://doi.org/10.1093/jxb/eru344.

[65]

Ziska, L.H., Tomecek, M.B., Gealy, D.R., 2014. Assessment of cultivated and wild, weedy rice lines to concurrent changes in CO2 concentration and air temperature: determining traits for enhanced seed yield with increasing atmospheric CO2Funct. Plant Biol. 41, 236-243. https://doi.org/10.1071/FP13155.

AI Summary AI Mindmap
PDF

294

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/