Effects of climate change on plant pathogens and host-pathogen interactions

Rachid Lahlalia,*, Mohammed Taoussia,b, Salah-Eddine Laaslia, Grace Gacharac,d, Rachid Ezzouggaria,e, Zineb Belabessf, Kamal Aberkanig, Amine Assouguema, Abdelilah Meddichh,i, Moussa El Jarroudij, Essaid Ait Barkak

Crop and Environment ›› 2024, Vol. 3 ›› Issue (3) : 159-170.

PDF
Crop and Environment ›› 2024, Vol. 3 ›› Issue (3) : 159-170. DOI: 10.1016/j.crope.2024.05.003
Review article

Effects of climate change on plant pathogens and host-pathogen interactions

  • Rachid Lahlalia,*, Mohammed Taoussia,b, Salah-Eddine Laaslia, Grace Gacharac,d, Rachid Ezzouggaria,e, Zineb Belabessf, Kamal Aberkanig, Amine Assouguema, Abdelilah Meddichh,i, Moussa El Jarroudij, Essaid Ait Barkak
Author information +
History +

Abstract

Crop production stands as a pivotal pillar of global food security, but its sustainability faces complex challenges from plant diseases, which pose a substantial threat to agricultural productivity. Climate change significantly alters the dynamics of plant pathogens, primarily through changes in temperature, humidity, and precipitation patterns, which can enhance the virulence and spread of various plant diseases. Indeed, the increased frequency of extreme weather events, which is a direct consequence of climate change, creates favorable conditions for outbreaks of plant diseases. As global temperatures rise, the geographic range of many plant pathogens is expanding, exposing new regions and species to diseases previously limited to warmer climates. Climate change not only affects the prevalence and severity of plant diseases but also influences the effectiveness of disease management strategies, necessitating adaptive approaches in agricultural practices. This review presents a thorough examination of the relationship between climate change and plant pathogens and carefully provides an analysis of the interplay between climatic shifts and disease dynamics. In addition to insights into the development of effective strategies for countering the adverse impacts of climate change on plant diseases, these insights hold significant promise for bolstering global crop production resilience against mounting environmental challenges.

Keywords

Climate change / Crop production / Greenhouse gas emissions / Mitigation strategies / Plant diseases

Cite this article

Download citation ▾
Rachid Lahlali, Mohammed Taoussi, Salah-Eddine Laasli, Grace Gachara, Rachid Ezzouggari, Zineb Belabess, Kamal Aberkani, Amine Assouguem, Abdelilah Meddich, Moussa El Jarroudi, Essaid Ait Barka. Effects of climate change on plant pathogens and host-pathogen interactions. Crop and Environment, 2024, 3(3): 159‒170 https://doi.org/10.1016/j.crope.2024.05.003

References

[1] Adhikari B.N., Hamilton J.P., Zerillo M.M., Tisserat N., Le,vesque C.A., Buell C.R., 2013. Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes. PLoS One 8, e75072.
[2] Ahmed N., Alam M., Saeed M., Ullah H., Junaid M., Kanwal M., Ahmed S., 2024. Role of plants in managing diseases. In: Öztürk, M., Sridhar, K.R., Sarwat, M., Altay, V., Huerta-Martínez, F.M. (Eds.), Ethnic Knowledge and Perspectives of Medicinal Plants. Apple Academic Press, New York, USA, pp. 579-604.
[3] Altieri M.A., Nicholls C.I., 2017. The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim. Change 140, 33-45.
[4] Banerjee N., Hallem E.A., 2020. The role of carbon dioxide in nematode behaviour and physiology. Parasitology 147, 841-854. https://doi.org/10.1017/S0031182019001422.
[5] Barzman M., Bàrberi P., Birch A.N.E., Boonekamp P., Dachbrodt-Saaydeh S., Graf B., Hommel B., Jensen J.E., Kiss J., Kudsk P., Lamichhane J.R., Messéan A., Moonen A.C., Ratnadass A., Ricci P., Sarah J.L., Sattin M., 2015. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199-1215.
[6] Bastas K.K.,2022. Impact of climate change on food security and plant disease. In: Kumar, A. (Ed.), Microbial Biocontrol: Food Security and Post Harvest Management. Springer, Cham, Switzerland, pp. 1-22.
[7] Bergot M., Cloppet E., Pérarnaud V., Déqué M., Marçais B., Desprez-Loustau M.L., 2004. Simulation of potential range expansion of oak disease caused by Phytophthora cinnamomi under climate change. Glob. Change Biol. 10, 1539-1552. https://doi.org/10.1111/j.1365-2486.2004.00824.x.
[8] Berkeley Earth, 2024. Global Temperature Anomalies. https://berkeleyearth.org/data/.
[9] Beyer M., Pallez-Barthel M., Dam D., Hoffmann L., El Jarroudi M., 2022. Enhancing septoria leaf blotch forecasts in winter wheat I: the effect of temperature on the temporal distance between critical rainfall periods and the breaking of the control threshold. J. Plant Dis. Prot. 129, 37-44.
[10] Biella P., Tommasi N., Guzzetti L., Pioltelli E., Labra M., Galimberti A., 2022. City climate and landscape structure shape pollinators, nectar and transported pollen along a gradient of urbanization. J. Appl. Ecol. 59, 1586-1595.
[11] Blumenthal D.M.,2006. Interactions between resource availability and enemy release in plant invasion. Ecol. Lett. 9, 887-895.
[12] Bornman J.F., Barnes P.W., Robinson S.A., Ballaré C.L., Flint S.D., Caldwell M.M., 2015. Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems. Photochem. Photobiol. Sci. 14, 88-107.
[13] Burdon J.J., Zhan J., 2020. Climate change and disease in plant communities. PLoS Biol. 18, e300049. https://doi.org/10.1371/JOURNAL.PBIO.3000949.
[14] Campillo C., Fortes R., Prieto M.H., Babatunde E.B., 2012. Solar radiation effect on crop production. In: Babatunde, E.B. (Ed.), Solar Radiation. IntechOpen, London, UK, pp. 167-194.
[15] Chakraborty S.,2013. Migrate or evolve: options for plant pathogens under climate change. Glob. Change Biol. 19, 1985-2000. https://doi.org/10.1111/gcb.12205.
[16] Chakraborty S., Newton A.C., 2011. Climate change, plant diseases and food security: an overview. Plant Pathol. 60, 2-14. https://doi.org/10.1111/j.1365-3059.2010.02411.x.
[17] Chaloner T.M., Gurr S.J., Bebber D.P., 2021. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Change 11, 710-715. https://doi.org/10.1038/s41558-021-01104-8.
[18] Charaya M.U., Upadhyay A., Bhati H.P., Kumar A., 2021. Plant disease forecasting: past practices to emerging technologies. In: Nehra, S. (Ed.), Plant Disease Management Strategies. Agrobios Research, Rajasthan, India, pp. 1-30.
[19] Chen W., Modi D., Picot A., 2023. Soil and phytomicrobiome for plant disease suppression and management under climate change: a review. Plants 12, 2736.
[20] Clayton S., Karazsia B.T., 2020. Development and validation of a measure of climate change anxiety. J. Environ. Psychol. 69, 101434.
[21] Cohen S.P., Leach J.E.,2020. High temperature-induced plant disease susceptibility: more than the sum of its parts. Curr. Opin. Plant Biol. 56, 235-241. https://doi.org/10.1016/j.pbi.2020.02.008.
[22] Cook J., Oreskes N., Doran P.T., Anderegg W.R.L., Verheggen B., Maibach E.W., Carlton J.S., Lewandowsky S., Skuce A.G., Green S.A., Nuccitelli D., Jacobs P., Richardson M., Winkler B., Painting R., Rice K., 2016. Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. Environ. Res. Lett. 11, 48002.
[23] Deepshikha Kumari B., Devi E.P., Sharma G., Rawat S., Jaiswal J.P., 2017. Irradiation as an alternative method for post-harvest disease management: an overview. Int. J. Agric. Environ. Biotechnol 10, 625-633.
[24] Deguine J.P., Aubertot J.N., Flor R.J., Lescourret F., Wyckhuys K.A.G., Ratnadass A., 2021. Integrated pest management: good intentions, hard realities. A review. Agron. Sustain. Dev. 41, 38. https://doi.org/10.1007/s13593-021-00689-w.
[25] Demers S., Roy S., de Mora S., 1996. The impact of ozone layer depletion on the marine environment. Ecodecision 19, 67-70.
[26] Deng J., Zhang W., Qin B., Zhang Y., Paerl H.W., Salmaso N., 2018. Effects of climatically-modulated changes in solar radiation and wind speed on spring phytoplankton community dynamics in Lake Taihu, China. PLoS One 13, e0205260.
[27] Desai S., Dubey S.C., Taduri M., Sultana U., Pinisetty S., 2021. Crop disease management strategies for rainfed cropping systems under changing climate scenarios. Indian Phytopathol. 74, 485-494. https://doi.org/10.1007/s42360-021-00339-x.
[28] Devendra C.,2012. Climate Change Threats and Effects: Challenges for Agriculture and Food Security. Academy of Sciences Malaysia, Kuala Lumpur, Malaysia.
[29] Devi R., Kaur T., Kour D., Yadav A., Yadav A.N., Suman A., Ahluwalia A.S., Saxena A.K., 2022. Minerals solubilizing and mobilizing microbiomes: A sustainable approach for managing minerals’ deficiencyin agricultural soil. J. Appl. Microbiol. 133, 1245-1272. https://doi.org/10.1111/JAM.15627.
[30] Diallo M., Legras B., Ray E., Engel A., Añel J.A.,2017. Global distribution of CO2 in the upper troposphere and stratosphere. Atmos. Chem. Phys. 17, 3861-3878. https://doi.org/10.5194/acp-17-3861-2017.
[31] Dixit S., Sivalingam P.N., Murali-Baskaran R.K., Senthil-Kumar M., Ghosh P.K., 2023. Plant responses to concurrent abiotic and biotic stress: unravelling physiological and morphological mechanisms. Plant Physiol. Rep. 29, 6-17.
[32] Djami-Tchatchou A.T., Allie F., Straker C.J., 2013. Expression of defence-related genes in avocado fruit (cv. Fuerte) infected with Colletotrichum gloeosporioides. S. Afr. J. Bot. 86, 92-100.
[33] Doehlemann G., Ökmen B., Zhu W., Sharon A., 2017. Plant pathogenic fungi. Microbiol. Spectr. 5, 1-23.
[34] Dutta P., Kumari A., Mahanta M., Upamanya G.K., Heisnam P., Borua S., Kaman P.K., Mishra A.K., Mallik M., Muthukrishnan G., Sabarinathan K.G., Puzari K.R., Vijayreddy D.,2023. Nanotechnological approaches for management of soil-borne plant pathogens. Front. Plant Sci. 14, 1136233. https://doi.org/10.3389/fpls.2023.1136233.
[35] Dutta S., Kamei A., Goldar S., Datta G., Bharati D.R.S., Ghorai A.K., Pathak S., Roy Barman A., Jash S., Ray S.K., 2020. Influence of weather variables on spore biology of Corynespora cassiicola, an incitant of target leaf spot disease of tomato. Arch. Phytopathol. Plant Protect. 53, 127-140.
[36] Dutta, T.K., Vicente, C.S.L., Maleita, C.M.N., Phani, V., 2023. Impact of global climate change on the interaction between plants and plant-parasitic nematodes. Front. Plant Sci. 14, 1195970. https://doi.org/10.3389/fpls.2023.1195970.
[37] Ebi K.L., Ziska L.H., Yohe G.W., 2016. The shape of impacts to come: lessons and opportunities for adaptation from uneven increases in global and regional temperatures. Clim. Change 139, 341-349.
[38] El Jarroudi M., Karjoun H., Kouadio L., El Jarroudi M., 2020. Mathematical modelling of non-local spore dispersion of wind-borne pathogens causing fungal diseases. Appl. Math. Comput. 376, 125107.
[39] El Sayed A., Kamel M., 2020. Climatic changes and their role in emergence and re- emergence of diseases. Environ. Sci. Pollut. Res. 27, 22336-22352.
[40] Elad Y., Pertot I.,2014. Climate change impacts on plant pathogens and plant diseases. J. Crop Improv. 28, 99-139. https://doi.org/10.1080/15427528.2014.865412.
[41] EPA (U.S. Environmental Protection Agency), 2023. Climate Change Impacts on Agriculture and Food Supply.
[42] Erayya S.S., Managanvi K., Kumar S., Alipatra A., 2023. Emerging diseases of vegetables due to changing climate. In: Solankey, S.S., Kumari, M. (Eds.), Advances in Research on Vegetable Production Under a Changing Climate, Vol. 2. Springer, Cham, Switzerland, pp. 323-340.
[43] Esker P.D., Sparks A.H., Antony G., Bates M., Dall’Acqua W., Frank E.E., Huebel L., Segovia V., Garrett K.A., 2007. Ecology and Epidemiology in R: Modeling Dispersal Gradients. The American Phytopathological Society, USA.
[44] European, Service., 2018. Sea Level Change [WWW Document]. URL. https://climate.copernicus.eu/sea-level.
[45] Faranda D., Bourdin S., Ginesta M., Krouma M., Noyelle R., Pons F., Yiou P., Messori G., 2022. A climate-change attribution retrospective of some impactful weather extremes of 2021. Weather Clim. Dynam. 3, 1311-1340.
[46] Garrett K.A., Nita M., De Wolf, E.D., Esker, P.D., Gomez-Montano, L., Sparks, A.H., 2021. Plant pathogens as indicators of climate change. In: Letcher, T.M. (Ed.), Climate Change. Elsevier, Amsterdam, Netherlands, pp. 499-513.
[47] Garrett K.A.,Thomas-Sharma, S., Forbes, G.A., Nopsa, J.H., 2014. Climate change and plant pathogen invasions. In: Ziska, L.H., Dukes, J.S. (Eds.), Invasive Species and Global Climate Change. Center for Agriculture and Bioscience International, Wallingford, UK, pp. 22-44. https://doi.org/10.1079/9781780641645.0022.
[48] Gautam H.R., Bhardwaj M.L., Kumar R., 2013. Climate change and its impact on plant diseases. Curr. Sci. 105, 1685-1691.
[49] Gitz V., Meybeck A., Lipper L., de Young, C., Braatz, S., 2016. Climate Change and Food Security: Risks and Responses. Food and Agriculture Organization of the United Nations, Rome, Italy. https://doi.org/10.1080/14767058.2017.1347921.
[50] Grassi C., Bouman B.A.M., Castañeda A.R., Manzelli M., Vecchio V., 2009. Aerobic rice: crop performance and water use efficiency. J. Agric. Environ. Int. Dev. 103, 259-270.
[51] Gullino M.L., Albajes R., Al-Jboory I., Angelotti F., Chakraborty S., Garrett K.A., Hurley B.P., Juroszek P., Lopian R., Makkouk K., Pan X., Pugliese M., Stephenson T., 2022. Climate change and pathways used by pests as challenges to plant health in agriculture and forestry. Sustainability 14, 12421.
[52] Gullino M.L., Pugliese M., Gilardi G., Garibaldi A., 2018. Effect of increased CO2 and temperature on plant diseases: a critical appraisal of results obtained in studies carried out under controlled environment facilities. J. Plant Pathol. 100, 371-389. https://doi.org/10.1007/s42161-018-0125-8.
[53] Gupta P.K., Chand R., Vasistha N.K., Pandey S.P., Kumar U., Mishra V.K., Joshi A.K., 2018. Spot blotch disease of wheat: the current status of research on genetics and breeding. Plant Pathol. 67, 508-531. https://doi.org/10.1111/PPA.12781.
[54] Hampel H., Toschi N., Babiloni C., Baldacci F., Black K.L., Bokde A.L.W., Bun R.S., Cacciola F., Cavedo E., Chiesa P.A., Colliot O., Coman C.M., Dubois B., Duggento A., Durrleman S., Ferretti M.T., George N., Genthon R., Habert M.O., Herholz K., Koronyo Y., Koronyo-Hamaoui M., Lamari F., Langevin T., Lehéricy S., Lorenceau J., Neri C., Nisticò R., Nyasse-Messene F., Ritchie C., Rossi S., Santarnecchi E., Sporns O., Verdooner S.R., Vergallo A., Villain N., Younesi E., Garaci F., Lista S., 2018. Revolution of alzheimer precision neurology. Passageway of systems biology and neurophysiology. J. Alzheimers Dis. 64, S47-S105. https://doi.org/10.3233/JAD-179932.
[55] Hernandez Nopsa, J.F., Thomas-Sharma, S., Garrett, K.A., 2014. Climate change and plant disease. In: Van Alfen, N.K. (Ed.), Encyclopedia of Agriculture and Food Systems. Academic Press, Oxford, USA, pp. 232-243. https://doi.org/10.1016/B978-0-444-52512-3.00004-8.
[56] Hiltpold I., Moore B.D., Johnson S.N., 2020. Elevated atmospheric carbon dioxide concentrations alter root morphology and reduce the effectiveness of entomopathogenic nematodes. Plant Soil 447, 29-38. https://doi.org/10.1007/s11104-019-04075-0.
[57] Hong C., Hansen M.A., Bush E.A., Day E.R., Del-Pozo A., Derr J.F., 2021. 2021 Home Grounds and Animals PMG-Home Ornamentals. Virginia Cooperative Extension, Fergie, USA.
[58] Hunjan M.S., Lore J.S., 2020. Climate change: impact on plant pathogens, diseases, and their management. In: Jabran, K., Florentine, S., Chauhan, B. (Eds.), Crop Protection Under Changing Climate. Springer, Cham, Switzerland, pp. 85-100.
[59] IPCC (The Intergovernmental Panel on Climate Change), 1995. IPCC Second Assessment Report. http://www.ipcc.ch.
[60] IPCC (The Intergovernmental Panel on Climate Change), 2007. Change 2007: the Physical Science Basis.
[61] Jeger M.J.,2022. The impact of climate change on disease in wild plant populations and communities. Plant Pathol. 71, 111-130.
[62] Jeger M.J., Beresford R., Bock C., Brown N., Fox A., Newton A., Vicent A., Xu X., Yuen J., 2021. Global challenges facing plant pathology: multidisciplinary approaches to meet the food security and environmental challenges in the mid-twenty-first century. CABI Agric. Biosci. 2, 1-18. https://doi.org/10.1186/s43170-021-00042-x.
[63] Ji T., Salotti I., Dong C., Li M., Rossi V., 2021. Modeling the effects of the environment and the host plant on the ripe rot of grapes, caused by the Colletotrichum species. Plants 10, 2288.
[64] Jiang L., Dunne J., Carter B.R., Tjiputra J.F., Terhaar J., Sharp J.D., Olsen A., Alin S., Bakker D.C.E., Feely R.A., Gattuso J.P., Hogan P., Ilyina T., Lange N., Lauvset S.K., Lewis E.R., Lovato T., Palmieri J., Santana-Falco,n Y., Schwinger J., Se,fe,rian R., Strand G., Swart N., Tanhua T., Tsujino H., Wanninkhof R., Watanabe M., Yamamoto A., Ziehn T., 2023. Global surface ocean acidification indicators from 1750 to 2100. J. Adv. Model. Earth Syst. 15, 1-23. https://doi.org/10.1029/2022MS003563.
[65] Kabir M., Habiba U.E., Khan W., Shah A., Rahim S.,De los Rios-Escalante, P.R., Farooqi, Z.U.R., Ali, L., Shafiq, M., 2023. Climate change due to increasing concentration of carbon dioxide and its impacts on environment in 21st century; a mini review. J. King Saud Univ. Sci. 35, 102693. https://doi.org/10.1016/j.jksus.2023.102693.
[66] Kashyap P.L., Srivastava A.K., Tiwari S.P., Kumar S., 2018. Microbes nanotechnology for climate resilient agriculture. In: Kashyap, P.L., Srivastava, A.K., Tiwari, S.P., Kumar, S. (Eds.), Micorbes for Climate Resilient Agriculture. Wiley, Hoboken, USA, pp. 279-344.
[67] Khadiri M., Boubaker H., Askarne L., Ezrari S., Radouane N., Farhaoui A.,El Hamss, H., Tahiri, A., Barka, E.A., Lahlali, R., 2023. Bacillus cereus B8W8 an effective bacterial antagonist against major postharvest fungal pathogens of fruit. Postharvest Biol. Technol. 200, 112315. https://doi.org/10.1016/j.postharvbio.2023.112315.
[68] Khursheed A., Rather M.A., Jain V., Wani A.R., Rasool S., Nazir R., Malik N.A., Majid S.A.,2022. Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides,limitations and regulatory aspects. Microb. Pathog. 173, 105854. https://doi.org/10.1016/j.micpath.2022.105854.
[69] Kirkby K.A., Lonergan P.A., Allen S.J., 2013. Three decades of cotton disease surveys in NSW, Australia. Crop Pasture Sci. 64, 774-779.
[70] Krafft C., Volokitin A.S., Gauthier G., 2019. Turbulence and microprocesses in inhomogeneous solar wind plasmas. Fluids 4, 69. https://doi.org/10.3390/fluids4020069.
[71] Kumar S., Thilagam P., Shikha D., Saikanth D.R.K., Rahmani U., Huded S., Panigrahi C.K., 2023. Adapting plant protection strategies to meet the challenges posed by climate change on plant diseases: a review. Int. J. Environ. Clim. Chang. 13, 25-36. https://doi.org/10.9734/ijecc/2023/v13i123657.
[72] Kweku D., Bismark O., Maxwell,A., Desmond K., Danso K., Oti-Mensah E., Quachie,A., Adormaa B., 2019. Greenhouse effect: greenhouse gases and their impact on global warming. J. Sci. Res. Rep. 17, 1-9. https://doi.org/10.9734/jsrr/2017/39630.
[73] Lake,J.A., Wade,R.N., 2009. Plant-pathogen interactions and elevated CO2: morphological changes in favour of pathogens. J. Exp. Bot. 60, 3123-3131. https://doi.org/10.1093/jxb/erp147.
[74] Lamichhane J.R., Barbetti M.J., Chilvers M.I., Pandey A.K., Steinberg C., 2023. Exploiting root exudates to manage soil-borne disease complexes in a changing climate. Trends Microbiol. 32, 27-37.
[75] Lawrence D., Coe M., Walker W., Verchot L., Vandecar K.,2022. The unseen effects of deforestation: biophysical effects on climate. Front. For. Glob. Change 5, 756115. https://doi.org/10.3389/ffgc.2022.756115.
[76] Lim J.A., Yaacob J.S., Mohd Rasli S.R.A., Eyahmalay J.E., El Enshasy H.A., Zakaria M.R.S., 2023. Mitigating the repercussions of climate change on diseases affecting important crop commodities in Southeast Asia, for food security and environmental sustainability-A review. Front. Sustain. Food Syst. 6, 1030540.
[77] Mallon C.A., van Elsas, J.D., Salles, J.F., 2015. Microbial invasions: the process, patterns, and mechanisms. Trends Microbiol. 23, 719-729. https://doi.org/10.1016/J.TIM.2015.07.013.
[78] Martínez-Arias C., Witzell J., Solla A., Martin J.A., Rodríguez-Calcerrada J., 2022. Beneficial and pathogenic plant-microbe interactions during flooding stress. Plant Cell Environ. 45, 2875-2897.
[79] Maurya M.K., Yadav V.K., Singh S.P., Jatoth R., Singh H.K., Singh D., 2022. Impact of climate change on diseases of crops and their management-a review. J. Agric. Sci. Technol. B 12, 1-15.
[80] Mayek-Pérez N., GarcÍa-Espinosa R., López-CastaÑeda C., Acosta-Gallegos J.A., Simpson J., 2002. Water relations, histopathology and growth of common bean (Phaseolus vulgaris L.) during pathogenesis of Macrophomina phaseolina under drought stress. Physiol. Mol. Plant Pathol. 60, 185-195.
[81] McElrone A.J., Reid C.D., Hoye K.A., Hart E.H., Jackson R.B., 2005. Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Glob. Change Biol. 11, 1828-1836. https://doi.org/10.1111/j.1365-2486.2005.001015.x.
[82] Moradinezhad F., Ranjbar A., 2023. Advances in postharvest diseases management of fruits and vegetables: a review. Horticulturae 9, 1099.
[83] Moullec F., Barrier N., Drira S., Guilhaumon F., Marsaleix P., Somot S., Ulses C., Velez L., Shin Y.J., 2019. An end-to-end model reveals losers and winners in a warming Mediterranean Sea. Front. Mar. Sci. 6, 345.
[84] Myers T.A., Scott R.C., Zelinka M.D., Klein S.A., Norris J.R., Caldwell P.M., 2021. Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity. Nat. Clim. Change 11, 501-507.
[85] Nath S.,2021. Dew as source of emerging contaminants in agricultural system. In: Sustainable Agriculture Reviews 50. Springer, Cham, Switzerland, pp. 61-78.
[86] Nda M., Adnan M.S., Ahmad K.A., Usman N., Razi M.A.M., Daud Z., 2018. A review on the causes, effects and mitigation of climate changes on the environmental aspects. Int. J. Integr. Eng. 10, 169-175. https://doi.org/10.30880/ijie.2018.10.04.027.
[87] Oceanography., S.I, 2023. CO2 Time Series.
[88] Ogbonna M.J., Umunna O.E., 2017. Pathogen penetration into the host plant tissues challenges and obstacles-An overview. Sch. J. Agric. Vet. Sci. 3, 37-41.
[89] Olori-Great N.G., Opara E.U., 2017. Defence mechanisms in plants against invading plant pathogenic microbes in Nigeria. J. Agric. Sustain. 10, 80-96.
[90] Pangga I.B., Hanan J., Chakraborty S., 2013. Climate change impacts on plant canopy architecture: implications for pest and pathogen management. Eur. J. Plant Pathol. 135, 595-610. https://doi.org/10.1007/s10658-012-0118-y.
[91] Pathak R., Singh S.K., Tak A., Gehlot P., 2018. Impact of climate change on host, pathogen and plant disease adaptation regime: a review. Biosci. Biotechnol. Res. Asia 15, 529-540.
[92] Porras M.F., Navas C.A., Agudelo-Cantero G.A., Santiago-Martínez M.G., Loeschcke V., Sørensen J.G., Crandall S.G., Biddinger D., Rajotte E.G., 2023. Extreme heat alters the performance of hosts and pathogen. Front. Ecol. Evol. 11, 1186452.
[93] Raza M.M., Bebber D.P.,2022. Climate change and plant pathogens. Curr. Opin. Microbiol. 70, 102233. https://doi.org/10.1016/j.mib.2022.102233.
[94] Rieux A., Soubeyrand S., Bonnot F., Klein E.K., Ngando J.E., Mehl A., Ravigne V., Carlier J., De Lapeyre de Bellaire, L., 2014. Long-distance wind-dispersal of spores in a fungal plant pathogen: estimation of anisotropic dispersal kernels from an extensive field experiment. PLoS One 9, e103225.
[95] Rivero R.M., Mittler R., Blumwald E., Zandalinas S.I., 2022. Developing climate- resilient crops: improving plant tolerance to stress combination. Plant J. 109, 373-389.
[96] Robalino L., Herrera L.D., 2010. Trade and deforestation: A literature review. World Trade Organization.
[97] Sanchez-Luca R., Mayoral C., Raw M., Mousouraki M.A., Luna E., 2023. Elevated CO2 alters photosynthesis, growth and susceptibility to powdery mildew of oak seedlings. Biochem. J. 480, 1429-1443. https://doi.org/10.1042/BCJ20230002.
[98] Shen M., Cai C., Song L., Qiu J., Ma C., Wang D., Gu X., Yang X., Wei W., Tao Y., Zhang J., Liu G., Zhu C., 2023. Elevated CO2 and temperature under future climate change increase severity of rice sheath blight. Front. Plant Sci. 14, 1115614. https://doi.org/10.3389/fpls.2023.1115614.
[99] Singh B.K., Delgado-Baquerizo M., Egidi E., Guirado E., Leach J.E., Liu H., Trivedi P., 2023. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 21, 640-656.
[100] Skendžić S., Zovko M., Živković I.P., Lešić V., Lemić D., 2021. The impact of climate change on agricultural insect pests. Insects 12, 440.
[101] Smith F., Luna E., 2023. Elevated atmospheric carbon dioxide and plant immunity to fungal pathogens: do the risks outweigh the benefits? Biochem. J. 148, 1791-1804. https://doi.org/10.1042/BCJ20230152.
[102] Sreenivas S.,2022. Impact of climate change on crop-pathogen interaction: a review. Int. J. Adv. Agric. Sci. Technol. 9, 1-4. https://doi.org/10.47856/ijaast.2022.v09i09.001.
[103] Sun C., Huang Y., Lian S., Saleem M., Li B., Wang C.,2021. Improving the biocontrol efficacy of Meyerozyma guilliermondii Y-1 with melatonin against postharvest gray mold in apple fruit. Postharvest Biol. Technol. 171, 111351. https://doi.org/10.1016/j.postharvbio.2020.111351.
[104] Sutton A.J., Feely R.A.,Maenner-Jones, S., Musielwicz, S., Osborne, J., Dietrich, C., Monacci, N., Cross, J., Bott, R., Kozyr, A., Andersson, A.J., Bates, N.R., Cai, W.J., Cronin, M.F., De Carlo, E.H., Hales, B., Howden, S.D., Lee, C.M., Manzello, D.P., McPhaden, M.J., Meléndez, M., Mickett, J.B., Newton, J.A., Noakes, S.E., Noh, J.H., Olafsdottir, S.R., Salisbury, J.E., Send, U., Trull, T.W., Vandemark, D.C., Weller, R.A., 2019. Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends. Earth Syst. Sci. Data 11, 421-439. https://doi.org/10.5194/essd-11-421-2019.
[105] Tanveer M., Mahmood A., Sarfraz B., Zia M.A., Javaid M.M., Bibi S., Naqve M., Nadeem M.A., Azeem M., Jabbar A., 2023. Mechanism and approaches to enhancing heat stress tolerance in crop plants. In: Hasanuzzaman, M. (Ed.), Climate- Resilient Agriculture, Vol 2: Agro-Biotechnological Advancement for Crop Production. Springer, Cham, Switzerland, pp. 499-520.
[106] Trenberth K.E.,2018. Climate change caused by human activities is happening and it already has major consequences. J. Energy Nat. Resour. Law 36, 463-481. https://doi.org/10.1080/02646811.2018.1450895.
[107] Váry Z., Mullins E., Mcelwain J.C., Doohan F.M., 2015. The severity of wheat diseases increases when plants and pathogens are acclimatized to elevated carbon dioxide. Glob. Change Biol. 21, 2661-2669. https://doi.org/10.1111/gcb.12899.
[108] Velásquez A.C., Castroverde C.D.M., He S., 2018. Plant-pathogen warfare under changing climate conditions. Curr. Biol. 28, R619-R634.
[109] Venkateswarlu B., Shanker A.K., 2009. Climate change and agriculture: Adaptation and mitigation stategies. Indian J. Agron. 54, 226-230.
[110] Wakelin S.A., Gomez-Gallego M., Jones E., Smaill S., Lear G., Lambie S., 2018. Climate change induced drought impacts on plant diseases in New Zealand. Austral. Plant Pathol. 47, 101-114. https://doi.org/10.1007/s13313-018-0541-4.
[111] Wegulo S., Giesler L., Harveson R., Jackson-Ziems, T.A., Liu, B., Korus, K., 2013. Impacts of drought on disease development and management. In: Sandell, L. (Ed.), Crop Production Clinics Proceedings. University of Nebraska-Lincoln Extension, Institute of Agriculture and Natural Resources, Lincoln, USA, pp. 125-127.
[112] Yáñez-López R., Torres-Pacheco I., Guevara-González R.G., Hernández-Zul M.I., Quijano-Carranza J.A., Rico-García E., 2012. The effect of climate change on plant diseases. Afr. J. Biotechnol. 11, 2417-2428. https://doi.org/10.5897/AJB10.2442.
[113] Zhan J., Ericson L., Burdon J.J., 2018. Climate change accelerates local disease extinction rates in a long-term wild host-pathogen association. Glob. Change Biol. 24, 3526-3536.
[114] Zhou,Y., van Leeuwen S.K., Pieterse,C.M.J., Bakker,P.A.H.M., van Wees S.C.M.,2019. Effect ofatmospheric CO2 on plant defense against leaf and root pathogens ofArabidopsis. Eur.J. Plant Pathol. 154, 31-42. https://doi.org/10.1007/s10658-019-01706-1.
Funding
* E-mail address: rlahlali@enameknes.ac.ma (R. Lahlali).
PDF

Accesses

Citations

Detail

Sections
Recommended

/