Effects of climate change on plant pathogens and host-pathogen interactions
Rachid Lahlali , Mohammed Taoussi , Salah-Eddine Laasli , Grace Gachara , Rachid Ezzouggari , Zineb Belabess , Kamal Aberkani , Amine Assouguem , Abdelilah Meddich , Moussa El Jarroudi , Essaid Ait Barka
Crop and Environment ›› 2024, Vol. 3 ›› Issue (3) : 159 -170.
Effects of climate change on plant pathogens and host-pathogen interactions
Crop production stands as a pivotal pillar of global food security, but its sustainability faces complex challenges from plant diseases, which pose a substantial threat to agricultural productivity. Climate change significantly alters the dynamics of plant pathogens, primarily through changes in temperature, humidity, and precipitation patterns, which can enhance the virulence and spread of various plant diseases. Indeed, the increased frequency of extreme weather events, which is a direct consequence of climate change, creates favorable conditions for outbreaks of plant diseases. As global temperatures rise, the geographic range of many plant pathogens is expanding, exposing new regions and species to diseases previously limited to warmer climates. Climate change not only affects the prevalence and severity of plant diseases but also influences the effectiveness of disease management strategies, necessitating adaptive approaches in agricultural practices. This review presents a thorough examination of the relationship between climate change and plant pathogens and carefully provides an analysis of the interplay between climatic shifts and disease dynamics. In addition to insights into the development of effective strategies for countering the adverse impacts of climate change on plant diseases, these insights hold significant promise for bolstering global crop production resilience against mounting environmental challenges.
Climate change / Crop production / Greenhouse gas emissions / Mitigation strategies / Plant diseases
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
EPA (U.S. Environmental Protection Agency), 2023. Climate Change Impacts on Agriculture and Food Supply. |
| [42] |
|
| [43] |
|
| [44] |
European, Service., 2018. Sea Level Change [WWW Document]. URL. https://climate.copernicus.eu/sea-level. |
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
IPCC (The Intergovernmental Panel on Climate Change), 1995. IPCC Second Assessment Report. http://www.ipcc.ch. |
| [60] |
IPCC (The Intergovernmental Panel on Climate Change), 1995. Change 2007: the Physical Science Basis. |
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
Oceanography., S. I, 2023. CO2 Time Series. |
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
/
| 〈 |
|
〉 |