Perspectives of improving rice photosynthesis for higher grain yield

Dongliang Xiong

Crop and Environment ›› 2024, Vol. 3 ›› Issue (3) : 123-137.

PDF
Crop and Environment ›› 2024, Vol. 3 ›› Issue (3) : 123-137. DOI: 10.1016/j.crope.2024.04.001
Review article

Perspectives of improving rice photosynthesis for higher grain yield

  • Dongliang Xiong
Author information +
History +

Abstract

Many efforts have been made to enhance rice photosynthesis for higher grain yields, although such knowledge has seldom been integrated into rice breeding programs. In this review, I first address the limitations and challenges of the theory that yield is controlled by photosynthesis, a concept rooted in the fact that carbon forms a significant part of plant mass, with photosynthesis acting as the fundamental pathway for carbon assimilation. Subsequently, the discussion covers photosynthesis indices, their measurement techniques, and the challenges in establishing correlations between photosynthesis indices and yields. The review then delves into recent advancements, including leveraging natural variations, enhancing the electron transport chain, augmenting the efficiency of ribulose bisphosphate carboxylase/oxygenase (Rubisco), increasing CO2 concentration around Rubisco, initiatives like the C4 rice project, strategies for photorespiration bypass, and non-leaf photosynthesis contributions. The conclusion emphasizes future research directions such as advocating for the incorporation of photosynthesis within broader organismic processes, unraveling the complex link between photosynthesis and grain yield, developing efficient and direct methods for photosynthesis phenotyping, and assessing photosynthetic performance under actual field conditions.

Keywords

CO2 assimilation / Grain yield / Natural variation / QTL / Rice photosynthesis / Sink-source relationships

Cite this article

Download citation ▾
Dongliang Xiong. Perspectives of improving rice photosynthesis for higher grain yield. Crop and Environment, 2024, 3(3): 123‒137 https://doi.org/10.1016/j.crope.2024.04.001

References

[1] Acevedo-Siaca L.G., Coe R., Quick W.P., Long S.P., 2021a. Evaluating natural variation, heritability, and genetic advance of photosynthetic traits in rice (Oryza sativa). Plant Breed. 140, 745-757. https://doi.org/10.1111/pbr.12965.
[2] Acevedo-Siaca L.G., Dionora J., Laza R., Quick W.P., Long S.P., 2021b. Dynamics of photosynthetic induction and relaxation within the canopy of rice and two wild relatives. Food Energy Secur. 10, e286. https://doi.org/10.1002/fes3.286.
[3] Adachi S., Ohkubo S., San N.S., Yamamoto T., 2020. Genetic determination for source capacity to support breeding of high-yielding rice (Oryza sativa). Mol. Breed. 40, 20. https://doi.org/10.1007/s11032-020-1101-5.
[4] Adachi S., Tsuru Y., Nito N., Murata K., Yamamoto T., Ebitani T., Ookawa T., Hirasawa T., 2011. Identification and characterization of genomic regions on chromosomes 4 and 8 that control the rate of photosynthesis in rice leaves. J. Exp. Bot. 62, 1927-1938. https://doi.org/10.1093/jxb/erq387.
[5] Adachi S., Yamamoto T., Nakae T., Yamashita M., Uchida M., Karimata R., Ichihara N., Soda K., Ochiai T., Ao R., Otsuka C., Nakano R., Takai T., Ikka T., Kondo K., Ueda T., Ookawa T., Hirasawa T., 2019. Genetic architecture of leaf photosynthesis in rice revealed by different types of reciprocal mapping populations. J. Exp. Bot. 70, 5131-5144. https://doi.org/10.1093/jxb/erz303.
[6] Amthor J.S., Bar-Even A., Hanson A.D., Millar A.H., Stitt M., Sweetlove L.J., Tyerman S.D., 2019. Engineering strategies to boost crop productivity by cutting respiratory carbon loss. Plant Cell 31, 297-314. https://doi.org/10.1105/tpc.18.00743.
[7] Araus J.L., Sanchez-Bragado R., Vicente R., 2021. Improving crop yield and resilience through optimization of photosynthesis: panacea or pipe dream? J. Exp. Bot. 72, 3936-3955. https://doi.org/10.1093/jxb/erab097.
[8] Baker N.R.,2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59, 89-113. https://doi.org/10.1146/annurev.arplant.59.032607.092759.
[9] Barber J.,2003. Photosystem II: the engine of life. Q. Rev. Biophys. 36, 71-89. https://doi.org/10.1017/S0033583502003839.
[10] Barbour M.M., Bachmann S., Bansal U., Bariana H., Sharp P., 2016. Genetic control of mesophyll conductance in common wheat. New Phytol. 209, 461-465. https://doi.org/10.1111/nph.13628.
[11] Baslam M., Mitsui T., Hodges M., Priesack E., Herritt M.T., Aranjuelo,I.,Sanz-Sáez, Á., 2020. Photosynthesis in a changing global climate: scaling up and scaling down in crops. Front. Plant Sci. 11, 882. https://doi.org/10.3389/fpls.2020.00882.
[12] Batista-Silva,W., da Fonseca-Pereira, P., Martins, A.O., Zsögön, A., Nunes-Nesi, A., Araújo, W.L., 2020. Engineering improved photosynthesis in the era of synthetic biology. Plant Commun. 1, 100032. https://doi.org/10.1016/j.xplc.2020.100032.
[13] Bauwe H.,2023. Photorespiration - Rubisco's repair crew. J. Plant Physiol. 280, 153899. https://doi.org/10.1016/j.jplph.2022.153899.
[14] Benson A.A., Bassham J.A., Calvin M., Goodale T.C., Haas V.A., Stepka W., 1950. The path of carbon in photosynthesis. V. Paper chromatography and radioautography of the products. J. Am. Chem. Soc. 72, 1710-1718. https://doi.org/10.1021/ja01160a080.
[15] Berry J.O., Yerramsetty P., Zielinski A.M., Mure C.M., 2013. Photosynthetic gene expression in higher plants. Photosynth. Res. 117, 91-120. https://doi.org/10.1007/s11120-013-9880-8.
[16] Bertolino L.T., Caine R.S., Zoulias N., Yin X., Chater C.C.C., Biswal A., Quick W.P., Gray J.E., 2022. Stomatal development and gene expression in rice florets. Plant Cell Physiol. 63, 1679-1694. https://doi.org/10.1093/pcp/pcac120.
[17] Bin Rahman A.N.M.R., Zhang J., 2023. Trends in rice research: 2030 and beyond. Food Energy Secur. 12, e390. https://doi.org/10.1002/fes3.390.
[18] Bracher A., Whitney S.M., Hartl F.U., Hayer-Hartl M., 2017. Biogenesis and metabolic maintenance of Rubisco. Annu. Rev. Plant Biol. 68, 29-60. https://doi.org/10.1146/annurev-arplant-043015-111633.
[19] Brazel A.J., Ó'Maoiléidigh D.S., 2019. Photosynthetic activity of reproductive organs. J. Exp. Bot. 70, 1737-1754. https://doi.org/10.1093/jxb/erz033.
[20] Buckley T.N.,2021. Optimal carbon partitioning helps reconcile the apparent divergence between optimal and observed canopy profiles of photosynthetic capacity. New Phytol. 230, 2246-2260. https://doi.org/10.1111/nph.17199.
[21] Buckley T.N., Martorell S., Diaz-Espejo A., Toma、s M., Medrano H., 2014. Is stomatal conductance optimized over both time and space in plant crowns? A field test in grapevine (Vitis vinifera). Plant Cell Environ. 37, 2707-2721. https://doi.org/10.1111/pce.12343.
[22] Buckley T.N., Sack L., Farquhar G.D., 2017. Optimal plant water economy. Plant Cell Environ. 40, 881-896. https://doi.org/10.1111/pce.12823.
[23] Burgess A.J., Masclaux-Daubresse C., Strittmatter G., Weber A.P.M., Taylor S.H., Harbinson J., Yin X., Long S., Paul M.J., Westhoff P., Loreto F., Ceriotti A., Saltenis V.L.R., Pribil M., Nacry P., Scharff L.B., Jensen P.E., Muller B., Cohan J.P., Foulkes J., Rogowsky P., Debaeke P., Meyer C., Nelissen H., Inzé D., Klein Lankhorst R., Parry M.A.J., Murchie E.H., Baekelandt A., 2023. Improving crop yield potential: Underlying biological processes and future prospects. Food Energy Secur. 12, e435. https://doi.org/10.1002/fes3.435.
[24] Busch F.A.,2020. Photorespiration in the context of Rubisco biochemistry, CO2 diffusion and metabolism. Plant J. 101, 919-939. https://doi.org/10.1111/tpj.14674.
[25] Busch F.A., Ainsworth E.A., Amtmann A., Cavanagh A.P., Driever S.M., Ferguson J.N., Kromdijk J., Lawson T., Leakey A.D.B., Matthews J.S.A., Meacham-Hensold K., Vath R.L., Vialet-Chabrand S., Walker B.J., Papanatsiou M., 2024. A guide to photosynthetic gas exchange measurements: Fundamental principles, best practice and potential pitfalls. Plant Cell Environ. https://doi.org/10.1111/pce.14815.
[26] Caine R.S., Yin X., Sloan J., Harrison E.L., Mohammed U., Fulton T., Biswal A.K., Dionora J., Chater C.C., Coe R.A., Bandyopadhyay A., Murchie E.H., Swarup R., Quick W.P., Gray J.E., 2019. Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytol. 221, 371-384. https://doi.org/10.1111/nph.15344.
[27] Calzadilla P.I., Carvalho F., Gomez R.,Lima Neto, M.C., Signorelli, S., 2022. Assessing photosynthesis in plant systems: a cornerstone to aid in the selection of resistant and productive crops. Environ. Exp. Bot. 201, 104950. https://doi.org/10.1016/j.envexpbot.2022.104950.
[28] Camino C.,Gonzalez-Dugo, V., Hernandez, P., Zarco-Tejada, P.J., 2019. Radiative transfer Vcmax estimation from hyperspectral imagery and SIF retrievals to assess photosynthetic performance in rainfed and irrigated plant phenotyping trials. Remote Sens. Environ. 231, 111186. https://doi.org/10.1016/j.rse.2019.05.005.
[29] Cardona T., Shao S., Nixon P.J., 2018. Enhancing photosynthesis in plants: the light reactions. Essays Biochem. 62, 85-94. https://doi.org/10.1042/EBC20170015.
[30] Carroll S., Amsbury S., Durney C.H., Smith R.S., Morris R.J., Gray J.E., Fleming A.J.,2022. Altering arabinans increases Arabidopsis guard cell flexibility and stomatal opening. Curr. Biol. 32, 3170-3179. https://doi.org/10.1016/j.cub.2022.05.042.
[31] Chang T., Song Q., Zhao H., Chang S., Xin C., Qu M., Zhu X., 2020. An in situ approach to characterizing photosynthetic gas exchange of rice panicle. Plant Methods 16, 92. https://doi.org/10.1186/s13007-020-00633-1.
[32] Chang T.G., Zhu X.G., Raines C., 2017. Source-sink interaction: a century old concept under the light of modern molecular systems biology. J. Exp. Bot. 68, 4417-4431. https://doi.org/10.1093/jxb/erx002.
[33] Chen T., Hojka M., Davey P., Sun Y., Dykes G.F., Zhou F., Lawson T., Nixon P.J., Lin Y., Liu L., 2023. Engineering α-carboxysomes into plant chloroplasts to support autotrophic photosynthesis. Nat. Commun. 14, 2118. https://doi.org/10.1038/s41467-023-37490-0.
[34] Chen T., Wu H., Wu J., Fan X., Li X., Lin Y., 2017. Absence of OsβCA1 causes a CO2 deficit and affects leaf photosynthesis and the stomatal response to CO2 in rice. Plant J. 90, 344-357. https://doi.org/10.1111/tpj.13497.
[35] Cheng X., Raissig M.T., 2023. From grasses to succulents - development and function of distinct stomatal subsidiary cells. New Phytol. 239, 47-53. https://doi.org/10.1111/nph.18951.
[36] de Souza A.P., Burgess S.J., Doran L., Hansen J., Manukyan L., Maryn N., Gotarkar D., Leonelli L., Niyogi K.K., Long S.P., 2022. Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection. Science 377, 851-854. https://doi.org/10.1126/science.adc9831.
[37] DiMario, R.J., Clayton, H., Mukherjee, A., Ludwig, M., Moroney, J.V., 2017. Plant carbonic anhydrases: structures, locations, evolution, and physiological roles. Mol. Plant 10, 30-46. https://doi.org/10.1016/j.molp.2016.09.001.
[38] Ding L., Gao L., Liu W., Wang M., Gu M., Ren B., Xu G., Shen Q., Guo S., 2016. Aquaporin plays an important role in mediating chloroplastic CO2 concentration under high-N supply in rice (Oryza sativa) plants. Physiol. Plant. 156, 215-226. https://doi.org/10.1111/ppl.12387.
[39] Ding L., Uehlein N., Kaldenhoff R., Guo S., Zhu Y., Kai L.,2019. Aquaporin PIP2;1 affects water transport and root growth in rice (Oryza sativa L.). Plant Physiol. Biochem. 139, 152-160. https://doi.org/10.1016/j.plaphy.2019.03.017.
[40] Dingkuhn M., Luquet D., Fabre D., Muller B., Yin X., Paul M.J.,2020. The case for improving crop carbon sink strength or plasticity for a CO2-rich future. Curr. Opin. Plant Biol. 56, 259-272. https://doi.org/10.1016/j.pbi.2020.05.012.
[41] Donald C.M.,1968. The breeding of crop ideotypes. Euphytica 17, 385-403. https://doi.org/10.1007/BF00056241.
[42] Du T., Meng P., Huang J., Peng S., Xiong D., 2020. Fast photosynthesis measurements for phenotyping photosynthetic capacity of rice. Plant Methods 16, 6. https://doi.org/10.1186/s13007-020-0553-2.
[43] Eisenhut M., Roell M.S., Weber A.P.M., 2019. Mechanistic understanding of photorespiration paves the way to a new green revolution. New Phytol. 223, 1762-1769. https://doi.org/10.1111/nph.15872.
[44] Ellsworth P.V., Ellsworth P.Z., Koteyeva N.K., Cousins A.B., 2018. Cell wall properties in Oryza sativa influence mesophyll CO2 conductance. New Phytol. 219, 66-76. https://doi.org/10.1111/nph.15173.
[45] Ermakova M., Danila F.R., Furbank R.T., von Caemmerer S., 2020. On the road to C4 rice: advances and perspectives. Plant J. 101, 940-950. https://doi.org/10.1111/tpj.14562.
[46] Evans J.R.,2021. Mesophyll conductance: walls, membranes and spatial complexity. New Phytol. 229, 1864-1876. https://doi.org/10.1111/nph.16968.
[47] Fabre D., Yin X., Dingkuhn M., Clément-Vidal A., Roques S., Rouan L., Soutiras A., Luquet D., 2019. Is triose phosphate utilization involved in the feedback inhibition of photosynthesis in rice under conditions of sink limitation? J. Exp. Bot. 70, 5773-5785. https://doi.org/10.1093/jxb/erz318.
[48] Faralli M., Lawson T., 2020. Natural genetic variation in photosynthesis: an untapped resource to increase crop yield potential? Plant J. 101, 518-528. https://doi.org/10.1111/tpj.14568.
[49] Farquhar G.D., von Caemmerer S., Berry J.A., 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78-90. https://doi.org/10.1007/BF00386231.
[50] Flexas J.,2016. Genetic improvement of leaf photosynthesis and intrinsic water use efficiency in C3 plants: Why so much little success? Plant Sci. 251, 155-161. https://doi.org/10.1016/j.plantsci.2016.05.002.
[51] Flexas J., Clemente-Moreno M.J., Bota J., Brodribb T.J., Gago J., Mizokami Y., Nadal M., Perera-Castro A.V., Roig-Oliver M., Sugiura D., Xiong D., Carriquí M., 2021. Cell wall thickness and composition are involved in photosynthetic limitation. J. Exp. Bot. 72, 3971-3986. https://doi.org/10.1093/jxb/erab144.
[52] Flexas J., Díaz-Espejo A., Conesa M.A., Coopman R.E., Douthe C., Gago J., Gallé A., Galmés J., Medrano H., Ribas-Carbo M., Toma、s M., Niinemets Ü., 2016. Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant Cell Environ. 39, 965-982. https://doi.org/10.1111/pce.12622.
[53] Flood P.J.,2019. Using natural variation to understand the evolutionary pressures on plant photosynthesis. Curr. Opin. Plant Biol. 49, 68-73. https://doi.org/10.1016/j.pbi.2019.06.001.
[54] Flood P.J., Harbinson J., Aarts M.G.M., 2011. Natural genetic variation in plant photosynthesis. Trends Plant Sci. 16, 327-335. https://doi.org/10.1016/j.tplants.2011.02.005.
[55] Flood P.J., Kruijer W., Schnabel S.K., van der Schoor R., Jalink H., Snel J.F.H., Harbinson J., Aarts M.G.M., 2016. Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. Plant Methods 12, 14. https://doi.org/10.1186/s13007-016-0113-y.
[56] Franks P.J., Farquhar G.D., 2007. The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol. 143, 78-87. https://doi.org/10.1104/pp.106.089367.
[57] Fu P., Montes C.M., Siebers M.H., Gomez-Casanovas N., McGrath J.M., Ainsworth E.A., Bernacchi C.J., 2022. Advances in field-based high-throughput photosynthetic phenotyping. J. Exp. Bot. 73, 3157-3172. https://doi.org/10.1093/jxb/erac077.
[58] Fukayama H., Mizumoto A., Ueguchi C., Katsunuma J., Morita R., Sasayama D., Hatanaka T., Azuma T., 2018. Expression level of Rubisco activase negatively correlates with Rubisco content in transgenic rice. Photosynth. Res. 137, 465-474. https://doi.org/10.1007/s11120-018-0525-9.
[59] Fukayama H., Ueguchi C., Nishikawa K., Katoh N., Ishikawa C., Masumoto C., Hatanaka T., Misoo S., 2012. Overexpression of rubisco activase decreases the photosynthetic CO2 assimilation rate by reducing Rubisco content in rice leaves. Plant Cell Physiol. 53, 976-986. https://doi.org/10.1093/pcp/pcs042.
[60] Furbank R., Kelly S., von Caemmerer S., 2023. Photosynthesis and food security: the evolving story of C4 rice. Photosynth. Res. 158, 121-130. https://doi.org/10.1007/s11120-023-01014-0.
[61] Furbank R.T., Jimenez-Berni J.A., George-Jaeggli B., Potgieter A.B., Deery D.M., 2019. Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops. New Phytol. 223, 1714-1727. https://doi.org/10.1111/nph.15817.
[62] Furbank R.T., Quick W.P., Sirault X.R.,2015. Improving photosynthesis and yield potential in cereal crops by targeted genetic manipulation: Prospects, progress and challenges. Field Crops Res. 182, 19-29. https://doi.org/10.1016/j.fcr.2015.04.009.
[63] Furbank R.T., Sharwood R., Estavillo G.M., Silva-Perez V., Condon A.G., 2020. Photons to food: genetic improvement of cereal crop photosynthesis. J. Exp. Bot. 71, 2226-2238. https://doi.org/10.1093/jxb/eraa077.
[64] Garcia A., Gaju O., Bowerman A.F., Buck S.A., Evans J.R., Furbank R.T., Gilliham M., Millar A.H., Pogson B.J., Reynolds M.P., Ruan Y.L., Taylor N.L., Tyerman S.D., Atkin O.K., 2023. Enhancing crop yields through improvements in the efficiency of photosynthesis and respiration. New Phytol. 237, 60-77. https://doi.org/10.1111/nph.18545.
[65] Giuliani R., Koteyeva N., Voznesenskaya E., Evans M.A., Cousins A.B., Edwards G.E., 2013. Coordination of leaf photosynthesis, transpiration, and structural traits in rice and wild relatives (Genus Oryza). Plant Physiol. 162, 1632-1651. https://doi.org/10.1104/pp.113.217497.
[66] Groszmann M., Osborn H.L., Evans J.R., 2017. Carbon dioxide and water transport through plant aquaporins. Plant Cell Environ. 40, 938-961. https://doi.org/10.1111/pce.12844.
[67] Gu J., Yin X., Struik P.C., Stomph T.J., Wang H., 2012. Using chromosome introgression lines to map quantitative trait loci for photosynthesis parameters in rice (Oryza sativaL.) leaves under drought and well-watered field conditions. J. Exp. Bot. 63, 455-469. https://doi.org/10.1093/jxb/err292.
[68] Gu J., Zhou Z., Li Z., Chen Y., Wang Z., Zhang H.,2017. Rice(Oryza sativaL.) with reduced chlorophyll content exhibit higher photosynthetic rate and efficiency, improved canopy light distribution, and greater yields than normally pigmented plants. Field Crops Res. 200, 58-70. https://doi.org/10.1016/j.fcr.2016.10.008.
[69] Gu L.,2023. Optimizing the electron transport chain to sustainably improve photosynthesis. Plant Physiol. 193, 2398-2412. https://doi.org/10.1093/plphys/kiad490.
[70] Hay R.K.M.,1995. Harvest index: a review of its use in plant breeding and crop physiology. Ann. Appl. Biol. 126, 197-216. https://doi.org/10.1111/j.1744-7348.1995.tb05015.x.
[71] Heise R., Arrivault S., Szecowka M., Tohge T.,Nunes-Nesi, A., Stitt, M., Nikoloski, Z., Fernie, A.R., 2014. Flux profiling of photosynthetic carbon metabolism in intact plants. Nat. Protoc. 9, 1803-1824. https://doi.org/10.1038/nprot.2014.115.
[72] Hibberd J.M., Sheehy J.E., Langdale J.A.,2008. Using C4 photosynthesis to increase the yield of rice-rationale and feasibility. Curr. Opin. Plant Biol. 11, 228-231. https://doi.org/10.1016/j.pbi.2007.11.002.
[73] Honda S., Imamura A., Seki Y., Chigira K., Iwasa M., Hayami K., Nomura T., Ohkubo S., Ookawa T., Nagano A.J., Matsuoka M., Tanaka Y., Adachi S., 2023. Genome-wide association study of leaf photosynthesis using a high-throughput gas exchange system in rice. Photosynth. Res. 159, 17-28. https://doi.org/10.1007/s11120-023-01065-3.
[74] Hu L., Zhang Y., Xia H., Fan S., Song J., Lv X., Kong L., 2019. Photosynthetic characteristics of non-foliar organs in main C3 cereals. Physiol. Plant. 166, 226-239. https://doi.org/10.1111/ppl.12838.
[75] Huang X., Wang Z., Huang J., Peng S., Xiong D., 2021. Mesophyll conductance variability of rice aquaporin knockout lines at different growth stages and growing environments. Plant J. 107, 1503-1512. https://doi.org/10.1111/tpj.15397.
[76] Hubbart S., Peng S., Horton P., Chen Y., Murchie E.H., 2007. Trends in leaf photosynthesis in historical rice varieties developed in the Philippines since 1966. J. Exp. Bot. 58, 3429-3438. https://doi.org/10.1093/jxb/erm192.
[77] Hubbart S., Smillie I.R.A., Heatley M., Swarup R., Foo C.C., Zhao L., Murchie E.H., 2018. Enhanced thylakoid photoprotection can increase yield and canopy radiation use efficiencyin rice. Commun. Biol. 1, 22. https://doi.org/10.1038/s42003-018-0026-6.
[78] Hunt L., Amsbury S., Baillie A., Movahedi M., Mitchell A., Afsharinafar M., Swarup K., Denyer T., Hobbs J.K., Swarup R., Fleming A.J., Gray J.E., 2017. Formation of the stomatal outer cuticular ledge requires a guard cell wall proline-rich protein. Plant Physiol. 174, 689-699. https://doi.org/10.1104/pp.16.01715.
[79] Hunt S.,2003. Measurements of photosynthesis and respiration in plants. Physiol. Plant. 117, 314-325. https://doi.org/10.1034/j.1399-3054.2003.00055.x.
[80] Imaizumi N., Usuda H., Nakamoto H., Ishihara K., 1990. Changes in the rate of photosynthesis during grain filling and the enzymatic activities associated with the photosynthetic carbon metabolism in rice panicles. Plant Cell Physiol. 31, 835-844. https://doi.org/10.1093/oxfordjournals.pcp.a077986.
[81] Ishikawa C., Hatanaka T., Misoo S., Miyake C., Fukayama H., 2011. Functional incorporation of sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice. Plant Physiol. 156, 1603-1611. https://doi.org/10.1104/pp.111.177030.
[82] Jin K., Chen G., Yang Y., Zhang Z., Lu T., 2023. Strategies for manipulating Rubisco and creating photorespiratory bypass to boost C3 photosynthesis: Prospects on modern crop improvement. Plant Cell Environ. 46, 363-378. https://doi.org/10.1111/pce.14500.
[83] Johnson G.N., Lawson T., 2015. Photosynthesis in variable environments. J. Exp. Bot. 66, 2371-2372. https://doi.org/10.1093/jxb/erv175.
[84] Johnson S.L.,2022. A year at the forefront of engineering photosynthesis. Biol. Open 11, bio059335. https://doi.org/10.1242/bio.059335.
[85] Joshi J., Amthor J.S., McCarty D.R., Messina C.D., Wilson M.A., Millar A.H., Hanson A.D., 2023. Why cutting respiratory CO2 loss from crops is possible, practicable, and prudential. Mod. Agric. 1, 16-26. https://doi.org/10.1002/moda.1.
[86] Ju C., Tao J., Qian X., Gu J., Zhang H., Zhao B., Liu L., Wang Z., Yang J.,2016. Leaf photosynthetic characteristics of mid-season indica rice varieties applied at different decades. Acta Agron. Sin. 42, 415-426. https://doi.org/10.3724/SP.J.1006.2016.00415.
[87] Kaiser E., Morales A., Harbinson J., 2018. Fluctuating light takes crop photosynthesis on a rollercoaster ride. Plant Physiol. 176, 977-989. https://doi.org/10.1104/pp.17.01250.
[88] Kanno K., Suzuki Y., Makino A., 2017. A small decrease in rubisco content by individual suppression of rbcs genes leads to improvement of photosynthesis and greater biomass production in rice under conditions of elevated CO2. Plant Cell Physiol. 58, 635-642. https://doi.org/10.1093/pcp/pcx018.
[89] Keller B., Soto J., Steier A., Portilla-Benavides A.E., Raatz B., Studer B., Walter A., Muller O., Urban M.O., 2024. Linking photosynthesis and yield reveals a strategy to improve light use efficiencyin a climbing bean breeding population. J. Exp. Bot. 75, 901-916. https://doi.org/10.1093/jxb/erad416.
[90] Kellogg E.A.,2009. The evolutionary history of Ehrhartoideae, Oryzeae, and Oryza. Rice 2, 1-14. https://doi.org/10.1007/s12284-009-9022-2.
[91] Kimm H., Guan K., Burroughs C.H., Peng B., Ainsworth E.A., Bernacchi C.J., Moore C.E., Kumagai E., Yang X., Berry J.A., Wu G., 2021. Quantifying high- temperature stress on soybean canopy photosynthesis: The unique role of sun-induced chlorophyll fluorescence. Glob. Change Biol. 27, 2403-2415. https://doi.org/10.1111/gcb.15603.
[92] Kiran T.V., Rao Y.V., Subrahmanyam D., Rani N.S., Bhadana V.P., Rao P.R., Voleti S.R., 2013. Variation in leaf photosynthetic characteristics in wild rice species. Photosynthetica 51, 350-358. https://doi.org/10.1007/s11099-013-0032-3.
[93] Klughammer C., Schreiber U., 1994. An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+ absorbance changes at 830 nm. Planta 192, 261-268. https://doi.org/10.1007/BF00194461.
[94] Kromdijk J., Głowacka K., Leonelli L., Gabilly S.T., Iwai M., Niyogi K.K., Long S.P., 2016. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 354, 857-861. https://doi.org/10.1126/science.aai8878.
[95] Kusumi K., Hirotsuka S., Kumamaru T., Iba K., 2012. Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein. J. Exp. Bot. 63, 5635-5644. https://doi.org/10.1093/jxb/ers216.
[96] Labroo M.R., Studer A.J., Rutkoski J.E.,2021. Heterosis and hybrid crop breeding: a multidisciplinary review. Front. Genet. 12, 643761. https://doi.org/10.3389/fgene.2021.643761.
[97] Lawson T., Kramer D.M., Raines C.A.,2012. Improving yield by exploiting mechanisms underlying natural variation of photosynthesis. Curr. Opin. Plant Biol. 23, 215-220. https://doi.org/10.1016/j.copbio.2011.12.012.
[98] Lawson T., Matthews J., 2020. Guard cell metabolism and stomatal function. Annu. Rev. Plant Biol. 71, 273-302. https://doi.org/10.1146/annurev-arplant-050718-100251.
[99] Lawson T., Milliken A.L., 2023. Photosynthesis - beyond the leaf. New Phytol. 238, 55-61. https://doi.org/10.1111/nph.18671.
[100] Leister D.,2019. Genetic engineering, synthetic biology and the light reactions of photosynthesis. Plant Physiol. 179, 778-793. https://doi.org/10.1104/pp.18.00360.
[101] Leister D.,2023. Enhancing the light reactions of photosynthesis: Strategies, controversies, and perspectives. Mol. Plant 16, 4-22. https://doi.org/10.1016/j.molp.2022.08.005.
[102] Li G., Chen T., Feng B., Peng S., Tao L., Fu G.,2021. Respiration, rather than photosynthesis, determines rice yield loss under moderate high-temperature conditions. Front. Plant Sci. 12, 678653. https://doi.org/10.3389/fpls.2021.678653.
[103] Li X., Wang P., Li J., Wei S., Yan Y., Yang J., Zhao M., Langdale J.A., Zhou W., 2020. Maize GOLDEN2-LIKE genes enhance biomass and grain yields in rice by improving photosynthesis and reducing photoinhibition. Commun. Biol. 3, 151. https://doi.org/10.1038/s42003-020-0887-3.
[104] Lin M.T., Occhialini A., Andralojc P.J., Parry M.A.J., Hanson M.R., 2014. A faster Rubisco with potential to increase photosynthesis in crops. Nature 513, 547-550. https://doi.org/10.1038/nature13776.
[105] Liu S., Baret F., Abichou M., Manceau L., Andrieu B., Weiss M., Martre P., 2021. Importance of the description of light interception in crop growth models. Plant Physiol. 186, 977-997. https://doi.org/10.1093/plphys/kiab113.
[106] Long S.P.,Marshall-Colon, A., Zhu, X., 2015. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161, 56-66. https://doi.org/10.1016/j.cell.2015.03.019.
[107] Long S.P., Taylor S.H., Burgess S.J., Carmo-Silva E., Lawson T., de Souza A.P., Leonelli L., Wang Y., 2022. Into the shadows and back into sunlight: photosynthesis in fluctuating light. Annu. Rev. Plant Biol. 73, 617-648. https://doi.org/10.1146/annurev-arplant-070221-024745.
[108] Long S.P., Zhu X.G., Naidu S.L., Ort D.R., 2006. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 29, 315-330. https://doi.org/10.1111/j.1365-3040.2005.01493.x.
[109] Lu J., He J., Zhou X., Zhong J., Li J., Liang Y.,2019. Homologous genes of epidermal patterning factor regulate stomatal development in rice. J. Plant Physiol. 234, 18-27. https://doi.org/10.1016/j.jplph.2019.01.010.
[110] Masumoto C., Fukayama H., Hatanaka T., Uchida N., 2012. Photosynthetic characteristics of antisense transgenic rice expressing reduced levels of Rubisco activase. Plant Prod. Sci. 15, 174-182. https://doi.org/10.1626/pps.15.174.
[111] Mathan J., Singh A., Jathar V., Ranjan A., 2021. High photosynthesis rate in two wild rice species is driven by leaf anatomy mediating high Rubisco activity and electron transport rate. J. Exp. Bot. 72, 7119-7135. https://doi.org/10.1093/jxb/erab313.
[112] Matsumura H., Shiomi K., Yamamoto A., Taketani Y., Kobayashi N., Yoshizawa T., Tanaka S.I., Yoshikawa H., Endo M., Fukayama H., 2020. Hybrid Rubisco with complete replacement of rice Rubisco small subunits by sorghum counterparts confers C4 plant-like high catalytic activity. Mol. Plant 13, 1570-1581. https://doi.org/10.1016/j.molp.2020.08.012.
[113] Maurel C., Boursiac Y., Luu D.T., Santoni V., Shahzad Z., Verdoucq L., 2015. Aquaporins in plants. Physiol. Rev. 95, 1321-1358. https://doi.org/10.1152/physrev.00008.2015.
[114] McKown K.H., Bergmann D.C., 2020. Stomatal development in the grasses: lessons from models and crops (and crop models). New Phytol. 227, 1636-1648. https://doi.org/10.1111/nph.16450.
[115] Minoli S., Jägermeyr J., Asseng S., Urfels A., Müller C., 2022. Global crop yields can be lifted by timely adaptation of growing periods to climate change. Nat. Commun. 13, 7079. https://doi.org/10.1038/s41467-022-34411-5.
[116] Momayyezi M., McKown A.D., Bell S.C.S., Guy R.D., 2020. Emerging roles for carbonic anhydrase in mesophyll conductance and photosynthesis. Plant J. 101, 831-844. https://doi.org/10.1111/tpj.14638.
[117] Monteith J.L.,1977. Climate and the efficiency of crop production in Britain. Philos. Trans. R. Soc. B-Biol. Sci. 281, 277-294. https://doi.org/10.1098/rstb.1977.0140.
[118] Moore C.E., Meacham-Hensold K., Lemonnier P., Slattery R.A., Benjamin C., Bernacchi C.J., Lawson T., Cavanagh A.P., 2021. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. J. Exp. Bot. 72, 2822-2844. https://doi.org/10.1093/jxb/erab090.
[119] Muehe E.M., Wang T., Kerl C.F., Planer-Friedrich B., Fendorf S., 2019. Rice production threatened by coupled stresses of climate and soil arsenic. Nat. Commun. 10, 4985. https://doi.org/10.1038/s41467-019-12946-4.
[120] Murchie E.H., Burgess A.J.,2022. Casting light on the architecture of crop yield. Crop Environ. 1, 74-85. https://doi.org/10.1016/j.crope.2022.03.009.
[121] Murchie E.H., Lawson T., 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J. Exp. Bot. 64, 3983-3998. https://doi.org/10.1093/jxb/ert208.
[122] Murchie E.H., Pinto M., Horton P., 2009. Agriculture and the new challenges for photosynthesis research. New Phytol. 181, 532-552. https://doi.org/10.1111/j.1469-8137.2008.02705.x.
[123] Murchie E.H., Ruban A.V., 2020. Dynamic non-photochemical quenching in plants: from molecular mechanism to productivity. Plant J. 101, 885-896. https://doi.org/10.1111/tpj.14601.
[124] Musiolková M., Huszár P., Navrátil M., Špunda V., 2021. Impact of season, cloud cover, and air pollution on different spectral regions of ultraviolet and visible incident solar radiation at the surface. Q. J. R. Meteorol. Soc. 147, 2834-2849. https://doi.org/10.1002/qj.4102.
[125] Nelson N., Yocum C.F., 2006. Structure and function of Photosystems I and II. Annu. Rev. Plant Biol. 57, 521-565. https://doi.org/10.1146/annurev.arplant.57.032905.105350.
[126] Nguyen N.D., Pulsford S.B., Long B.M.,2023a. Plant-based carboxysomes: another step toward increased crop yields. Trends Biochem. Sci. 48, 832-834. https://doi.org/10.1016/j.tibs.2023.07.003.
[127] Nguyen T.B.A., Lefoulon, C., Nguyen, T.H., Blatt, M.R., Carroll, W., 2023b. Engineering stomata for enhanced carbon capture and water-use efficiency. Trends Plant Sci. 28, 1290-1309. https://doi.org/10.1016/j.tplants.2023.06.002.
[128] Niinemets Ü.,2023. Variation in leaf photosynthetic capacity within plant canopies: optimization, structural, and physiological constraints and inefficiencies. Photosynth. Res. 158, 131-149. https://doi.org/10.1007/s11120-023-01043-9.
[129] Niinemets Ü., Keenan T.F., Hallik L., 2015. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol. 205, 973-993. https://doi.org/10.1111/nph.13096.
[130] Papale D., Reichstein M., Aubinet M., Canfora E., Bernhofer C., Kutsch W., Longdoz B., Rambal S., Valentini R., Vesala T., Yakir D.,2006. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3, 571-583. https://doi.org/10.5194/bg-3-571-2006.
[131] Pathare V.S., Panahabadi R., Sonawane B.V., Apalla A.J., Koteyeva N., Bartley L.E., Cousins A.B., 2023. Altered cell wall hydroxycinnamate composition impacts leaf- and canopy-level CO2 uptake and water use in rice. Plant Physiol. 194, 190-208. https://doi.org/10.1093/plphys/kiad428.
[132] Paul M.J.,2021. Improving photosynthetic metabolism for crop yields: what is going to work? Front. Plant Sci. 12, 743862. https://doi.org/10.3389/fpls.2021.743862.
[133] Paul M.J., Gonzalez-Uriarte A., Griffiths C.A., Hassani-Pak K., 2018. The role of trehalose 6-phosphate in crop yield and resilience. Plant Physiol. 177, 12-23. https://doi.org/10.1104/pp.17.01634.
[134] Paul M.J., Watson A., Griffiths C.A., 2020. Linking fundamental science to crop improvement through understanding source and sink traits and their integration for yield enhancement. J. Exp. Bot. 71, 2270-2280. https://doi.org/10.1093/jxb/erz480.
[135] Peng S., Khush G.S., Virk P., Tang Q., Zou Y.,2008. Progress in ideotype breeding to increase rice yield potential. Field Crops Res. 108, 32-38. https://doi.org/10.1016/j.fcr.2008.04.001.
[136] Phillips A.L., Scafaro A.P., Atwell B.J., 2022. Photosynthetic traits of Australian wild rice (Oryza australiensis) confer tolerance to extreme daytime temperatures. Plant Mol. Biol. 110, 347-363. https://doi.org/10.1007/s11103-021-01210-3.
[137] Pinto F., Celesti M., Acebron K., Alberti G., Cogliati S., Colombo R., Juszczak R., Matsubara S., Miglietta F., Palombo A., Panigada C., Pignatti S., Rossini M., Sakowska K., Schickling A., Schüttemeyer D., Strózecki M., Tudoroiu M., Rascher U., 2020. Dynamics of sun-induced chlorophyll fluorescence and reflectance to detect stress-induced variations in canopy photosynthesis. Plant Cell Environ. 43, 1637-1654. https://doi.org/10.1111/pce.13754.
[138] Poorter H., Fiorani F., Pieruschka R., Wojciechowski T., van der Putten W.H., Kleyer M., Schurr U., Postma J., 2016. Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field. New Phytol. 212, 838-855. https://doi.org/10.1111/nph.14243.
[139] Porcar-Castell A., Tyystjärvi E., Atherton J., van der Tol C., Flexas J., Pfündel E.E., Moreno J., Frankenberg C., Berry J.A., 2014. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. J. Exp. Bot. 65, 4065-4095. https://doi.org/10.1093/jxb/eru191.
[140] Prado S.A., Cabrera-Bosquet L., Grau A., Coupel-Ledru A., Millet E.J., Welcker C., Tardieu F., 2018. Phenomics allows identification of genomic regions affecting maize stomatal conductance with conditional effects of water deficit and evaporative demand. Plant Cell Environ. 41, 314-326. https://doi.org/10.1111/pce.13083.
[141] Prywes N., Phillips N.R., Tuck O.T., Valentin-Alvarado L.E., Savage D.F., 2023. Rubisco function, evolution, and engineering. Annu. Rev. Biochem. 92, 385-410. https://doi.org/10.1146/annurev-biochem-040320-101244.
[142] Qu M., Essemine J., Xu J., Ablat G., Perveen S., Wang H., Chen K., Zhao Y., Chen G., Chu C., Zhu X., 2020. Alterations in stomatal response to fluctuating light increase biomass and yield of rice under drought conditions. Plant J. 104, 1334-1347. https://doi.org/10.1111/tpj.15004.
[143] Qu M., Zheng G., Hamdani S., Essemine J., Song Q., Wang H., Chu C., Sirault X., Zhu X., 2017. Leaf photosynthetic parameters related to biomass accumulation in a global rice diversity survey. Plant Physiol. 175, 248-258. https://doi.org/10.1104/pp.17.00332.
[144] Raissig M.T., Matos J.L., Anleu Gil M.X., Kornfeld A., Bettadapur A., Abrash E., Allison H.R., Badgley G., Vogel J.P., Berry J.A., Bergmann D.C., 2017. Mobile MUTE specifies subsidiary cells to build physiologically improved grass stomata. Science 355, 1215-1218. https://doi.org/10.1126/science.aal3254.
[145] Reynolds M., Atkin O.K., Bennett M., Cooper M., Dodd I.C., Foulkes M.J., Frohberg C., Hammer G., Henderson I.R., Huang B., Korzun V.,McCouch, S.R., Messina, C.D., Pogson, B.J., Slafer, G.A., Taylor, N.L., Wittich, P.E., 2021. Addressing research bottlenecks to crop productivity. Trends Plant. Sci. 26, 607-630. https://doi.org/10.1016/j.tplants.2021.03.011.
[146] Saito H., Fukuta Y., Obara M., Tomita A., Ishimaru T., Sasaki K., Fujita D., Kobayashi N., 2021. Two novel QTLs for the harvest index that contribute to high- yield production in rice (Oryza sativa L.). Rice 14, 18. https://doi.org/10.1186/s12284-021-00456-1.
[147] Salter W.T., Gilbert M.E., Buckley T.N., 2018. A multiplexed gas exchange system for increased throughput of photosynthetic capacity measurements. Plant Methods 14, 80. https://doi.org/10.1186/s13007-018-0347-y.
[148] Sanchez-Bragado,R., Vicente, R., Molero, G., Serret, M.D., Maydup, M.L., Araus, J.L., 2020. New avenues for increasing yield and stability in C3 cereals: exploring ear photosynthesis. Curr. Opin. Plant Biol. 56, 223-234. https://doi.org/10.1016/j.pbi.2020.01.001.
[149] Schuler M.L., Mantegazza O., Weber A.P.M., 2016. Engineering C4 photosynthesis into C3 chassis in the synthetic biology age. Plant J. 87, 51-65. https://doi.org/10.1111/tpj.13155.
[150] Seck P.A., Diagne A., Mohanty S., Wopereis M.C.S., 2012. Crops that feed the world 7: Rice. Food Secur. 4, 7-24. https://doi.org/10.1007/s12571-012-0168-1.
[151] Sedelnikova O.V., Hughes T.E., Langdale J.A., 2018. Understanding the genetic basis of C4 Kranz anatomy with a view to engineering C3 crops. Annu. Rev. Genet. 52, 249-270. https://doi.org/10.1146/annurev-genet-120417-031217.
[152] Sharwood R.E., Quick W.P., Sargent D., Estavillo G.M., Silva-Perez V., Furbank R.T., 2022. Mining for allelic gold: finding genetic variation in photosynthetic traits in crops and wild relatives. J. Exp. Bot. 73, 3085-3108. https://doi.org/10.1093/jxb/erac081.
[153] Sheehy J.E., Mitchell P.L., Hardy B., 2008. Charting New Pathways to C4 Rice. World Scientific, New Jersey, USA. https://doi.org/10.1142/6560.
[154] Shen B., Wang L., Lin X., Yao Z., Xu H., Zhu C., Teng H., Cui L., Liu E., Zhang J., He Z., Peng X.,2019. Engineering a new chloroplastic photorespiratory bypass to increase photosynthetic efficiency and productivity in rice. Mol. Plant 12, 199-214. https://doi.org/10.1016/j.molp.2018.11.013.
[155] Shimakawa G., Miyake C., 2019. What quantity of Photosystem I is optimum for safe photosynthesis? Plant Physiol. 179, 1479-1485. https://doi.org/10.1104/pp.18.01493.
[156] Simkin A.J., Faralli M., Ramamoorthy S., Lawson T., 2020. Photosynthesis in non-foliar tissues: implications for yield. Plant J. 101, 1001-1015. https://doi.org/10.1111/tpj.14633.
[157] Simkin A.J., McAusland L., Lawson T., Raines C.A., 2017. Overexpression of the RieskeFeS protein increases electron transport rates and biomass yield. Plant Physiol. 175, 134-145. https://doi.org/10.1104/pp.17.00622.
[158] Sinclair T.R., Rufty T.W., Lewis R.S.,2019. Increasing photosynthesis: unlikely solution for world food problem. Trends Plant Sci. 24, 1032-1039. https://doi.org/10.1016/j.tplants.2019.07.008.
[159] Slattery R.A., Ort D.R., 2015. Photosynthetic energy conversion efficiency: setting a baseline for gauging future improvements in important food and biofuel crops. Plant Physiol. 168, 383-392. https://doi.org/10.1104/pp.15.00066.
[160] Slattery R.A., Ort D.R., 2021. Perspectives on improving light distribution and light use efficiency in crop canopies. Plant Physiol. 185, 34-48. https://doi.org/10.1093/plphys/kiaa006.
[161] Smith E.N., van Aalst, M., Tosens, T., Niinemets, Ü., Stich, B., Morosinotto, T., Alboresi, A., Erb, T.J., Gómez-Coronado, P.A., Tolleter, D., Finazzi, G., Curien, G., Heinemann, M., Ebenhöh, O., Hibberd, J.M., Schlüter, U., Sun, T., Weber, A.P.M., 2023. Improving photosynthetic efficiency toward food security: Strategies, advances, and perspectives. Mol. Plant 16, 1547-1563. https://doi.org/10.1016/j.molp.2023.08.017.
[162] Song,Q., Xiao H., Xiao X., Zhu X.,2016. A new canopy photosynthesis and transpiration measurement system (CAPTS) for canopy gas exchange research. Agric. For. Meteorol. 217, 101-107. https://doi.org/10.1016/j.agrformet.2015.11.020.
[163] Suganami M., Suzuki Y., Tazoe Y., Yamori W., Makino A., 2021. Co-overproducing Rubisco and Rubisco activase enhances photosynthesis in the optimal temperature range in rice. Plant Physiol. 185, 108-119. https://doi.org/10.1093/plphys/kiaa026.
[164] Suzuki Y., Ohkubo M., Hatakeyama H., Ohashi K., Yoshizawa R., Kojima S., Hayakawa T., Yamaya T., Mae T., Makino A., 2007. Increased Rubisco content in transgenic rice transformed with the ‘sense’ rbcS gene. Plant Cell Physiol. 48, 626-637. https://doi.org/10.1093/pcp/pcm035.
[165] Takeda T., Maruta H., 1956. Studies on CO2 Exchange in crop plants: IV. Roles played by the various parts of the photosynthetic organd of rice plant in producing grains during the ripening period. Jpn. J. Crop Sci. 24, 181-184. https://doi.org/10.1626/jcs.24.181.
[166] Tambussi E.A., Maydup M.L., Carrión C.A., Guiamet J.J., Araus J.L., 2021. Ear photosynthesis in C3 cereals and its contribution to grain yield: methodologies, controversies, and perspectives. J. Exp. Bot. 72, 3956-3970. https://doi.org/10.1093/jxb/erab125.
[167] Tanaka M., Keira M., Yoon D.K., Mae T., Ishida H., Makino A., Ishiyama K., 2022. Photosynthetic enhancement, lifespan extension, and leaf area enlargement in flag leaves increased the yield of transgenic rice plants overproducing Rubisco under sufficient N fertilization. Rice 15, 10. https://doi.org/10.1186/s12284-022-00557-5.
[168] Tanksley S.D., Nelson J.C., 1996. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor. Appl. Genet. 92, 191-203. https://doi.org/10.1007/BF00223376.
[169] Theeuwen T.P.J.M., Logie L.L., Harbinson J., Aarts M.G.M., 2022. Genetics as a key to improving crop photosynthesis. J. Exp. Bot. 73, 3122-3137. https://doi.org/10.1093/jxb/erac076.
[170] Tregunna E.B., Krotkov G., Nelson C.D., 1964. Further evidence on the effects of light on respiration during photosynthesis. Can. J. Bot. 42, 989-997. https://doi.org/10.1139/b64-090.
[171] Trethowan R.M.,2014. Defining a genetic ideotype for crop improvement. In: Fleury, D., Whitford, R. (Eds.), Crop Breeding. Springer New York, New York, USA, pp. 1-20.
[172] Tsuno Y., Sato T., Miyamoto H., Harada N., 1975. Studies on CO2 uptake and CO2 evolution in each part of crop plants: II. Photosynthetic activity in the leafsheath and ear of rice plant. Jpn. J. Crop Sci. 44, 287-292. https://doi.org/10.1626/JCS.44.287.
[173] Uffelmann E., Huang Q., Munung N.S., de Vries J., Okada Y., Martin A.R., Martin H.C., Lappalainen T., Posthuma D., 2021. Genome-wide association studies. Nat. Rev. Method. Prim. 1, 59. https://doi.org/10.1038/s43586-021-00056-9.
[174] von Caemmerer S., Quick W.P., Furbank R.T., 2012. The development of C4 rice: current progress and future challenges. Science 336, 1671-1672. https://doi.org/10.1126/science.1220177.
[175] Walter J., Kromdijk J., 2022. Here comes the sun: How optimization of photosynthetic light reactions can boost crop yields. J. Integr. Plant Biol. 64, 564-591. https://doi.org/10.1111/jipb.13206.
[176] Wang P., Karki S., Biswal A.K., Lin H., Dionora M.J., Rizal G., Yin X., Schuler M.L., Hughes T., Fouracre J.P., Jamous B.A., Sedelnikova O., Lo S.F., Bandyopadhyay A., Yu S., Kelly S., Quick W.P., Langdale J.A., 2017a. Candidate regulators of early leaf development in maize perturb hormone signalling and secondary cell wall formation when constitutively expressed in rice. Sci. Rep. 7, 4535. https://doi.org/10.1038/s41598-017-04361-w.
[177] Wang P., Khoshravesh R., Karki S., Tapia R., Balahadia C.P., Bandyopadhyay A., Quick W.P., Furbank R., Sage T.L., Langdale J.A.,2017b. Re-creation of a key step in the evolutionary switch from C3 to C4 leaf anatomy. Curr. Biol. 27, 3278-3287. https://doi.org/10.1016/j.cub.2017.09.040.
[178] Wang P., Vlad D., Langdale J.A.,2016. Finding the genes to build C4 rice. Curr. Opin. Plant Biol. 31, 44-50. https://doi.org/10.1016/j.pbi.2016.03.012.
[179] Wang W., Mauleon R., Hu Z., Chebotarov D., Tai S., Wu Z., Li M., Zheng T., Fuentes R.R., Zhang F., Mansueto L., Copetti D., Sanciangco M., Palis K.C., Xu J., Sun C., Fu B., Zhang H., Gao Y., Zhao X., Shen F., Cui X., Yu H., Li Z., Chen M., Detras J., Zhou Y., Zhang X., Zhao Y., Kudrna D., Wang C., Li R., Jia B., Lu J., He X., Dong Z., Xu J., Li Y., Wang M., Shi J., Li J., Zhang D., Lee S., Hu W., Poliakov A., Dubchak I., Ulat V.J., Borja F.N., Mendoza J.R., Ali J., Gao Q., Niu Y., Yue Z., Naredo M.E.B., Talag J., Wang X., Li J., Fang X., Yin Y., Glaszmann J.C., Zhang J., Li J., Hamilton R.S., Wing R.A., Ruan J., Zhang G., Wei C., Alexandrov N., McNally K.L., Li Z., Leung H., 2018. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43-49. https://doi.org/10.1038/s41586-018-0063-9.
[180] Wei S., Li X., Lu Z., Zhang H., Ye X., Zhou Y., Li J., Yan Y., Pei H., Duan F., Wang D., Chen S., Wang P., Zhang C., Shang L., Zhou Y., Yan P., Zhao M., Huang J., Bock R., Qian Q., Zhou W., 2022. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science 377, eabi8455. https://doi.org/10.1126/science.abi8455.
[181] White A.C., Rogers A., Rees M., Osborne C.P., 2016. How can we make plants grow faster? A source-sink perspective on growth rate. J. Exp. Bot. 67, 31-45. https://doi.org/10.1093/jxb/erv447.
[182] Wolf D.D., Carson E., Brown R.H.,1972. Light interception efficiency measurements. J. Agron. Educ. 1, 40-42. https://doi.org/10.2134/jae.1972.0040.
[183] Wright I.J., Reich P.B., Westoby M., Ackerly D.D., Baruch Z., Bongers F., Cavender- Bares J., Chapin T., Cornelissen J.H.C., Diemer M., Flexas J., Garnier E., Groom P.K., Gulias J., Hikosaka K., Lamont B.B., Lee T., Lee W., Lusk C., Midgley J.J., Navas M.L., Niinemets U., Oleksyn J., Osada N., Poorter H., Poot P., Prior L., Pyankov V.I., Roumet C., Thomas S.C., Tjoelker M.G., Veneklaas E.J., Villar R., 2004. The worldwide leaf economics spectrum. Nature 428, 821-827. https://doi.org/10.1038/nature02403.
[184] Wu A., Hammer G.L., Doherty A., von Caemmerer S., Farquhar G.D., 2019a. Quantifying impacts of enhancing photosynthesis on crop yield. Nat. Plants 5, 380-388. https://doi.org/10.1038/s41477-019-0398-8.
[185] Wu Z., Chen L., Yu Q., Zhou W., Gou X., Li J., Hou S., 2019b. Multiple transcriptional factors control stomata development in rice. New Phytol. 223, 220-232. https://doi.org/10.1111/nph.15766.
[186] Xin C., Tholen D., Devloo V., Zhu X., 2015. The benefits of photorespiratory bypasses: how can they work? Plant Physiol. 167, 574-585. https://doi.org/10.1104/pp.114.248013.
[187] Xiong D.,2023. Leaf anatomy does not explain the large variability of mesophyll conductance across C3 crop species. Plant J. 113, 1035-1048. https://doi.org/10.1111/tpj.16098.
[188] Xiong D., Flexas J., 2018. Leaf economics spectrum in rice: leaf anatomical, biochemical, and physiological trait trade-offs. J. Exp. Bot. 69, 5599-5609. https://doi.org/10.1093/jxb/ery322.
[189] Xiong D., Flexas J., Yu T., Peng S., Huang J., 2017. Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza. New Phytol. 213, 572-583. https://doi.org/10.1111/nph.14186.
[190] Xu,F., Wang,K., Yuan,W., Xu,W.,Shuang,L., Kronzucker,H.J., Chen,G., Miao,R., Zhang,M., Ding M., Xiao L., Kai L., Zhang J., Zhu Y., 2019. Overexpression of rice aquaporin OsPIP1;2 improves yield by enhancing mesophyll CO2 conductance and phloem sucrose transport. J. Exp. Bot. 70, 671-681. https://doi.org/10.1093/jxb/ery386.
[191] Xu H., Wang H., Zhang Y., Yang X., Lv S., Hou D., Mo C., Wassie M., Yu B., Hu T.,2023. A synthetic light-inducible photorespiratory bypass enhances photosynthesis to improve rice growth and grain yield. Plant Commun. 4, 100641. https://doi.org/10.1016/j.xplc.2023.100641.
[192] Yadav S.K., Khatri K., Rathore M.S., Jha B., 2018. Introgression of UfCytc6, a thylakoid lumen protein from a green seaweed Ulva fasciata Delile enhanced photosynthesis and growth in tobacco. Mol. Biol. Rep. 45, 1745-1758. https://doi.org/10.1007/s11033-018-4318-1.
[193] Yamori W., Kondo E., Sugiura D., Terashima I., Suzuki Y., Makino A., 2016. Enhanced leaf photosynthesis as a target to increase grain yield: insights from transgenic rice lines with variable Rieske FeS protein content in the cytochrome b6/f complex. Plant Cell Environ. 39, 80-87. https://doi.org/10.1111/pce.12594.
[194] Yamori W., Masumoto C., Fukayama H., Makino A., 2012. Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature. Plant J. 71, 871-880. https://doi.org/10.1111/j.1365-313X.2012.05041.x.
[195] Yang J., Zhang J.,2023. Simultaneously improving grain yield and water and nutrient use efficiencies by enhancing the harvest index in rice. Crop Environ. 2, 157-164. https://doi.org/10.1016/j.crope.2023.07.001.
[196] Yeo M.E., Yeo A.R., Flowers T.J., 1994. Photosynthesis and photorespiration in the genus Oryza. J. Exp. Bot. 45, 553-560. https://doi.org/10.1093/jxb/45.5.553.
[197] Yin X., Gu J., Dingkuhn M., Struik P.C., 2022. A model-guided holistic review of exploiting natural variation of photosynthesis traits in crop improvement. J. Exp. Bot. 73, 3173-3188. https://doi.org/10.1093/jxb/erac109.
[198] Yoon D.K., Ishiyama K., Suganami M., Tazoe Y., Watanabe M., Imaruoka S., Ogura M., Ishida H., Suzuki Y., Obara M., Mae T., Makino A., 2020. Transgenic rice overproducing Rubisco exhibits increased yields with improved nitrogen-use efficiencyin an experimental paddy field. Nat. Food 1, 134-139. https://doi.org/10.1038/s43016-020-0033-x.
[199] Zavafer A., Labeeuw L., Mancilla C., 2020. Global trends of usage of chlorophyll fluorescence and projections for the next decade. Plant Phenomics, 6293145. https://doi.org/10.34133/2020/6293145.
[200] Zhang M., Wang Y., Chen X., Xu F., Ding M., Ye W., Kawai Y., Toda Y., Hayashi Y., Suzuki T., Zeng H., Xiao L., Xiao X., Xu J., Guo S., Yan F., Shen Q., Xu G., Kinoshita T., Zhu Y., 2021. Plasma membrane H+-ATPase overexpression increases rice yield via simultaneous enhancement of nutrient uptake and photosynthesis. Nat. Commun. 12, 735. https://doi.org/10.1038/s41467-021-20964-4.
[201] Zhang S., He X., Zhao J., Cheng Y., Xie Z., Chen Y., Yang T., Dong J., Wang X., Liu Q., Liu W., Mao X., Fu H., Chen Z., Liao Y., Liu B., 2017. Identification and validation of a novel major QTL for harvest index in rice (Oryza sativa L.). Rice 10, 44. https://doi.org/10.1186/s12284-017-0183-0.
[202] Zhang W., Kokubun M., 2004. Historical changes in grain yield and photosynthetic rate of rice cultivars released in the 20th century in Tohoku region. Plant Prod. Sci. 7, 36-44. https://doi.org/10.1626/pps.7.36.
[203] Zhu X., Hasanuzzaman M., Jajoo A., Lawson T., Lin R., Liu C., Liu L., Liu Z., Lu C., Moustakas M., Roach T., Song Q., Yin X., Zhang W.,2022. Improving photosynthesis through multidisciplinary efforts: the next frontier of photosynthesis research. Front. Plant Sci. 13, 967203. https://doi.org/10.3389/fpls.2022.967203.
[204] Zhu X., Long S.P., Ort D.R., 2010. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 61, 235-261. https://doi.org/10.1146/annurev-arplant-042809-112206.
PDF

Accesses

Citations

Detail

Sections
Recommended

/