From wild to cultivated crops: general shift in morphological and physiological traits for yield enhancement following domestication

Zhangying Leia,b,1, Ziliang Lib,1, Wangfeng Zhangb, Daohua Hea,**, Yali Zhangb,*

Crop and Environment ›› 2024, Vol. 3 ›› Issue (3) : 138-146.

PDF
Crop and Environment ›› 2024, Vol. 3 ›› Issue (3) : 138-146. DOI: 10.1016/j.crope.2024.03.001
Review article

From wild to cultivated crops: general shift in morphological and physiological traits for yield enhancement following domestication

  • Zhangying Leia,b,1, Ziliang Lib,1, Wangfeng Zhangb, Daohua Hea,**, Yali Zhangb,*
Author information +
History +

Abstract

Crop species undergo artificial selection as a result of domestication under agricultural field conditions. However, there is limited information on the pattern of how domestication alters leaf photosynthesis, morphology, and biomass and its allocation. In this review, we firstly introduced the concept of crop domestication, provided clarity on crop domestication syndrome, and emphasized the significance in the conservation and re-utilization of wild crop resources. Next, we discussed the variation in crop biomass and yield using a compiled dataset comprised of 54 wild and cultivated species. We subsequently summarized the general shift in physiological traits including higher growth and photosynthetic rates, light use efficiency, leaf area, chlorophyll, and nitrogen content, which may be associated with greater biomass and yield during crop domestication. We ended by identifying what has been learned on how domestication optimized plant performance to produce today's crops, and by providing some examples of how this knowledge was being exploited and redirected to drive crop improvement in the near future. These general patterns following crop domestication present several implications for offering valuable insights into shaping future genetic engineering targets and improving agricultural management practices.

Keywords

Biomass / Crop domestication / Morphological traits / Photosynthesis / Physiological trait / Yield

Cite this article

Download citation ▾
Zhangying Lei, Ziliang Li, Wangfeng Zhang, Daohua He, Yali Zhang. From wild to cultivated crops: general shift in morphological and physiological traits for yield enhancement following domestication. Crop and Environment, 2024, 3(3): 138‒146 https://doi.org/10.1016/j.crope.2024.03.001

References

[1] Abbo S., van-Oss, R.P., Gopher, A., Saranga, Y., Ofner, I., Peleg, Z., 2014. Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci. 19, 351-360. https://doi.org/10.1016/j.tplants.2013.12.002.
[2] Ågren G.I.,2008. Stoichiometry and nutrition of plant growth in natural communities. Annu. Rev. Ecol. Evol. Syst. 39, 153-170. https://doi.org/10.1146/annurev.ecolsys. 39.110707.173515.
[3] Ågren G.I., Martin Wetterstedt J.Å., Billberger M.F.K., 2012. Nutrient limitation on terrestrial plant growth - modeling the interaction between nitrogen and phosphorus. New Phytol. 194, 953-960. https://doi.org/10.1111/j.1469-8137.2012.04116.x.
[4] Alseekh S., Scossa F., Wen W., Luo J., Yan J., Beleggia R., Klee H.J., Huang S., Papa R., Fernie A.R.,2021. Domestication of crop metabolomes: desired and unintended consequences. Trends Plant Sci. 26, 650-661. https://doi.org/10.1016/j.tplants.2021.02.005.
[5] Araus J.L., Ferrio J.P., Voltas J., Aguilera M., Buxó R., 2014. Agronomic conditions and crop evolution in ancient Near East agriculture. Nat. Commun. 5, 3953. https://doi.org/10.1038/ncomms4953.
[6] Beaulieu J.M., Leitch I.J., Knight C.A., 2007. Genome size evolution in relation to leaf strategy and metabolic rates revisited. Ann. Bot. 99, 495-505. https://doi.org/10.1093/aob/mcl271.
[7] Beaulieu J.M., Leitch I.J., Patel S., Pendharkar A., Knight C.A., 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol. 179, 975-986. https://doi.org/10.1111/j.1469-8137.2008.02528.x.
[8] Bitocchi E., Bellucci E., Giardini A., Rau D., Rodriguez M., Biagetti E., Santilocchi R., Zeuli P.S., Gioia T., Logozzo G., Attene G., Nanni L., Papa R., 2013. Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol. 197, 300-313. https://doi.org/10.1111/j.1469-8137.2012.04377.x.
[9] Bogaard A., Fraser R., Heaton T.H.E., Wallace M., Vaiglova P., Charles M., Jones G., Evershed R.P., Styring A.K., Andersen N.H., Arbogast R.-M., Bartosiewicz L., Gardeisen A., Kanstrup M., Maier U., Marinova E., Ninov L., Schäfer M., Stephan E., 2013. Crop manuring and intensive land management by Europe’s first farmers. Proc. Natl. Acad. Sci. U.S.A. 110, 12589-12594. https://doi.org/10.1073/pnas.1305918110.
[10] Brestic M., Zivcak M., Hauptvogel P., Misheva S., Kocheva K., Yang X., Li X., Allakhverdiev S.I., 2018. Wheat plantselection for high yields entailed improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions. Photosynth. Res. 136, 245-255. https://doi.org/10.1007/s11120-018-0486-z.
[11] Cagnola J.I., Parco M., Rotili D.H., Ploschuk E.L., Curin F., Amas J.I., Luque S.F., Maddonni G.A., Otegui M.E., Casal J.J., 2021. Artificial selection for grain yield has increased net CO2 exchange of the ear leaf in maize crops. J. Exp. Bot. 72, 3902-3913. https://doi.org/10.1093/jxb/erab119.
[12] Castro-Díez P., Puyravaud J.P., Cornelissen J.H.C., 2000. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types. Oecologia 124, 476-486. https://doi.org/10.1007/PL00008873.
[13] Chapin F.S., Groves R.H., Evans L.T., 1989. Physiological determinants of growth rate in response to phosphorus supply in wild and cultivated Hordeum species. Oecologia 79, 96-105. https://doi.org/10.1007/BF00378245.
[14] Chen Y.H., Gols R., Benrey B., 2015. Crop domestication and its impact on naturally selected trophic interactions. Annu. Rev. Entomol. 60, 35-58. https://doi.org/10.1146/annurev-ento-010814-020601.
[15] Choi J.Y., Purugganan M.D., 2018. Multiple origin but single domestication led to Oryza sativa. G3-Genes Genomes Genet. 8, 797-803. https://doi.org/10.1534/g3.117.300334.
[16] Conesa M.À., Muir C.D., Roldán E.J., Molins A., Perdomo J.A., Galmés J.,2017. Growth capacity in wild tomatoes and relatives correlates with original climate in arid and semi-arid species. Environ. Exp. Bot. 141, 181-190. https://doi.org/10.1016/j.envexpbot.2017.04.009.
[17] Cook M.G., Evans L.T., 1983. Some physiological aspects of the domestication and improvement of rice (Oryzaspp.). Field Crops Res. 6, 219-238. https://doi.org/10.1016/0378-4290(83)90062-X.
[18] Cornish K., Radin J.W., Turcotte E.L., Lu Z., Zeiger E., 1991. Enhanced photosynthesis and stomatal conductance of pima cotton (Gossypium barbadenseL.) bred for increased yield. Plant Physiol. 97, 484-489.
[19] Darwin C.,1868. The Variation of Animals and Plants under Domestication, First Ed. John Murray, London, U.K. https://doi.org/10.1017/CBO9780511709500.
[20] de Felipe M., Prado S.A., 2021. Has yield plasticity already been exploited by soybean breeding programmes in Argentina? J. Exp. Bot. 72, 7264-7273. https://doi.org/10.1093/jxb/erab347.
[21] Delgado-Baquerizo M., Reich P.B., García-Palacios P., Milla R., 2016. Biogeographic bases for a shift in crop C: N : P stoichiometries during domestication. Ecol. Lett. 19, 564-575. https://doi.org/10.1111/ele.12593.
[22] Denison R.F.,2012. Darwinian Agriculture: How Understanding Evolution Can Improve Agriculture. Princeton University Press, New Jersey, U.S.A. https://doi.org/10.23943/princeton/9780691139500.001.0001
[23] Denison R.F.,2015. Evolutionary tradeoffs as opportunities to improve yield potential. Field Crops Res. 182, 3-8. https://doi.org/10.1016/j.fcr.2015.04.004.
[24] Denison R.F., Kiers E.T., West S.A., 2003. Darwinian agriculture: when can humans find solutions beyond the reach of natural selection? Q. Rev. Biol. 78, 145-168. https://doi.org/10.1086/374951.
[25] Diamond J.,2002. Evolution, consequences and future of plant and animal domestication. Nature 418, 700-707. https://doi.org/10.1038/nature01019.
[26] Doebley J.F., Gaut B.S., Smith B.D.,2006. The molecular genetics of crop domestication. Cell 127, 1309-1321. https://doi.org/10.1016/j.cell.2006.12.006.
[27] Donald C.M.,1968. The breeding of crop ideotypes. Euphytica 17, 385-403. https://doi.org/10.1007/BF00056241.
[28] Duncan W.G., Hesketh J.D., 1968. Net photosynthetic rates, relative leaf growth rates, and leaf numbers of 22 races of maize grown at eight temperatures. Crop Sci. 8, 670-674. https://doi.org/10.2135/cropsci1968.0011183X000800060009x.
[29] Ellsworth D.S., Reich P.B., 1992. Leaf mass per area, nitrogen content and photosynthetic carbon gain in Acer saccharum seedlings in contrasting forest light environments. Funct. Ecol. 423-435. https://doi.org/10.2307/2389280.
[30] Elser J.J., Sterner R.W., Gorokhova E., Fagan W.F., Markow T.A., Cotner J.B., Harrison J.F., Hobbie S.E., Odell G.M., Weider L.W., 2000. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 3, 540-550. https://doi.org/10.1046/j.1461-0248.2000.00185.x.
[31] Evans J.R.,2013. Improving photosynthesis. Plant Physiol. 162, 1780-1793. https://doi.org/10.1104/pp.113.219006.
[32] Evans J.R., Poorter H., 2001. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ. 24, 755-767. https://doi.org/10.1046/j.1365-3040. 2001.00724.x.
[33] Evans L.T.,1993. Crop Evolution, Adaptation and Yield. Cambridge University Press, New York, U.S.A.
[34] Evans L.T., Bush M.G., 1985. Growth and development of channel millet (Echinochloa turneriana) in relation to its potential as a crop plant and compared with other Echinochloa millets, rice and wheat. Field Crops Res. 12, 295-317. https://doi.org/10.1016/0378-4290(85)90076-0.
[35] Evans L.T., Dunstone R., 1970. Some physiological aspects of evolution in wheat. Aust. J. Biol. Sci. 23, 725-742. https://doi.org/10.1071/bi9700725.
[36] Falster D.S., Westoby M., 2003. Plant height and evolutionary games. Trends Ecol. Evol. 18, 337-343. https://doi.org/10.1016/S0169-5347(03)00061-2.
[37] Fernandez A.R., Sáez A., Quintero C., Gleiser G., Aizen M.A., 2021. Intentional and unintentional selection during plant domestication: herbivore damage, plant defensive traits and nutritional quality of fruit and seed crops. New Phytol. 231, 1586-1598. https://doi.org/10.1111/nph.17452.
[38] Fernie A.R., Yan J.,2019. De novo domestication: an alternative route toward new crops for the future. Mol. Plant 12, 615-631. https://doi.org/10.1016/j.molp.2019.03.016.
[39] Fuller D.Q., Allaby R., 2018. Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation. Ann. Plant Rev. Online 38, 238-295. https://doi.org/10.1002/9781119312994.apr0414.
[40] Fuller D.Q., Denham T., Arroyo-Kalin M., Lucas L., Stevens C.J., Qin L., Allaby R.G., Purugganan M.D., 2014. Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proc. Natl. Acad. Sci. U.S.A. 111, 6147-6152. https://doi.org/10.1073/pnas.1308937110.
[41] García-Palacios P., Milla R., Delgado-Baquerizo M., Martín-Robles N., Álvaro-Sánchez M., Wall D.H., 2013. Side-effects of plant domestication: ecosystem impacts of changes in litter quality. New Phytol. 198, 504-513. https://doi.org/10.1111/nph.12127.
[42] Gepts P., Osborn T.C., Rashka K., Bliss F.A., 1986. Phaseolin-protein variability in wild forms and landraces of the common Bean (Phaseolus vulgaris): Evidence for multiple centers of domestication. Econ. Bot. 40, 451-468. https://doi.org/10.1007/BF02859659.
[43] Gifford R.M., Evans L.T., 1981. Photosynthesis, carbon partitioning, and yield. Annu. Rev. Plant Biol. 32, 485-509. https://doi.org/10.1146/annurev.pp.32.060181.002413.
[44] Gioia T., Nagel K.A., Beleggia R., Fragasso M., Ficco D.B.M., Pieruschka R., De Vita P., Fiorani F., Papa R., 2015. Impact of domestication on the phenotypic architecture of durum wheat under contrasting nitrogen fertilization. J. Exp. Bot. 66, 5519-5530. https://doi.org/10.1093/jxb/erv289.
[45] Giuliani R., Koteyeva N., Voznesenskaya E., Evans M.A., Cousins A.B., Edwards G.E., 2013. Coordination of leaf photosynthesis, transpiration, and structural traits in rice and wild relatives (genus Oryza). Plant Physiol. 162, 1632-1651. https://doi.org/10.1104/pp.113.217497.
[46] Gómez-Ferández A., Osborne C.P., Rees M., Palomino J., Ingala C., Gómez G., Milla R., 2022. Disparities among crop species in the evolution of growth rates: the role of distinct origins and domestication histories. New Phytol. 233, 995-1010. https://doi.org/10.1111/nph.17840.
[47] González A., Lynch J., Tohme J.M., Beebe S.E., Macchiavelli R.E., 1995. Characters related to leaf photosynthesis in wild populations and landraces of common bean. Crop Sci. 35, 1468-1476. https://doi.org/10.2135/cropsci1995.0011183X003500050034x.
[48] González-Paleo,L., Ravetta, D.A., 2011. Indirect changes associated with a selection program for increased seed-yield in wild species ofLesquerella(Brassicaceae): Are we developing a phenotype opposite to the expected ideotype? Ind. Crop. Prod. 34, 1372-1380. https://doi.org/10.1016/j.indcrop.2010.12.006.
[49] Granier C., Aguirrezabal L., Chenu K., Cookson S.J., Dauzat M., Hamard P., Thioux J., Rolland G., Bouchier-Combaud S., Lebaudy A., Muller B., Simonneau T., Tardieu F., 2006. PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol. 169, 623-635. https://doi.org/10.1111/j.1469-8137.2005.01609.x.
[50] Gruber K.,2017. Agrobiodiversity: The living library. Nature 544, S8-S10. https://doi.org/10.1038/544S8a.
[51] Haas M., Schreiber M., Mascher M., 2019. Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions. J. Integr. Plant Biol. 61, 204-225. https://doi.org/10.1111/jipb.12737.
[52] Halloran G.M., Pennell A.L., 1982. Grain size and seedling growth of wheat at different ploidy levels. Ann. Bot. 49, 103-113. https://doi.org/10.1093/oxfordjournals.aob.a086219.
[53] Hammer K.,1984. Das domestikationssyndrom. Die Kulturpflanze 32, 11-34. https://doi.org/10.1007/BF02098682 (in German).
[54] Harlan J.R.,1971. Agricultural origins: centers and noncenters. Science 174, 468-474. https://doi.org/10.1126/science.174.4008.468.
[55] Hickey L.T., Hafeez A.N., Robinson H., Jackson S.A., Leal-Bertioli S.C.M., Tester M., Gao C., Godwin I.D., Hayes B.J., Wulff B.B.H., 2019. Breeding crops to feed 10 billion. Nat. Biotechnol. 37, 744-754. https://doi.org/10.1038/s41587-019-0152-9.
[56] Huang G., Huang J., Chen X., Zhu Y., 2021. Recent advances and future perspectives in cotton research. Annu. Rev. Plant Biol. 72, 437-462. https://doi.org/10.1146/annurev-arplant-080720-113241.
[57] Huang G., Peng S., Li Y., 2022. Variation of photosynthesis during plant evolution and domestication: implications for improving crop photosynthesis. J. Exp. Bot. 73, 4886-4896. https://doi.org/10.1093/jxb/erac169.
[58] Jones D.A.,1998. Why are so many food plants cyanogenic? Phytochemistry 47, 155-162. https://doi.org/10.1016/S0031-9422(97)00425-1.
[59] Kebede H., Martin B., Nienhuis J., King G., 1994. Leaf anatomy of two Lycopersicon species with contrasting gas exchange properties. Crop Sci. 34, 108-113. https://doi.org/10.2135/cropsci1994.0011183X003400010019x.
[60] Khan M.A., Tsunoda S., 1970. Growth analysis of cultivated wheat species and their wild relatives with special reference to dry matter distribution among different plant organs and to leaf area expansion. Tohoku J. Agric. Res. 21, 47-59.
[61] Knight C.A., Ackerly D.D., 2003. Evolution and plasticity of photosynthetic thermal tolerance, specific leaf area and leaf size: congeneric species from desert and coastal environments. New Phytol. 160, 337-347. https://doi.org/10.1046/j.1469-8137.2003.00880.x.
[62] Koester R.P., Nohl B.M., Diers B.W., Ainsworth E.A., 2016. Has photosynthetic capacity increased with 80 years of soybean breeding? An examination of historical soybean cultivars. Plant Cell Environ. 39, 1058-1067. https://doi.org/10.1111/pce.12675.
[63] Kondamudi R., Swamy K.N., Rao Y.V., Kiran T.V., Suman K., Rao D.S., Rao P.R., Subrahmanyam D., Sarla N., Kumari B.R., Voleti S.R., 2016. Gas exchange, carbon balance and stomatal traits in wild and cultivated rice (Oryza sativa L.) genotypes. Acta Physiol. Plant. 38, 160. https://doi.org/10.1007/s11738-016-2173-z.
[64] Lambers H.,2022. Phosphorus acquisition and utilization in plants. Annu. Rev. Plant Biol. 73, 17-42. https://doi.org/10.1146/annurev-arplant-102720-125738.
[65] Lambers H., Raven J., Shaver G., Smith S.,2008. Plant nutrient-acquisition strategies change with soil age. Trends Ecol. Evol. 23, 95-103. https://doi.org/10.1016/j.tree.2007.10.008.
[66] Larson G., Piperno D.R., Allaby R.G., Purugganan M.D., Andersson L., Arroyo-Kalin M., Barton L., Vigueira C.C., Denham T., Dobney K., Doust A.N., Gepts P., Gilbert M.T.P., Gremillion K.J., Lucas L., Lukens L., Marshall F.B., Olsen K.M., Pires J.C., Richerson P.J., Rubio De Casas R., Sanjur O.I., Thomas M.G., Fuller D.Q., 2014. Current perspectives and the future of domestication studies. Proc. Natl. Acad. Sci. U.S.A. 111, 6139-6146. https://doi.org/10.1073/pnas.1323964111.
[67] Lei Z., Han J., Chen Y., Zhang W., Cai X., Liu F., Zhang Y., 2023a. The effect of domestication on leaf and vein anatomy and light use efficiency in cotton. Physiol. Plant. 175, e13884. https://doi.org/10.1111/ppl.13884.
[68] Lei Z., He Y., Li X., He Z., Zhang Y., Zhang W., Liu F., Zhang Y., 2023b. Domestication has reduced leaf water use efficiency associated with the abaxial stomatal anatomy in cotton. J. Exp. Bot. 74, 878-888. https://doi.org/10.1093/jxb/erac447.
[69] Lei Z., Liu F., Wright I.J., Carriquí M., Niinemets Ü., Han J., Jia M., Atwell B.J., Cai X., Zhang W., Zhou Z., Zhang Y., 2022a. Comparisons of photosynthetic and anatomical traits between wild and domesticated cotton. J. Exp. Bot. 73, 873-885. https://doi.org/10.1093/jxb/erab293.
[70] Lei Z., Wang H., Wright,I.J., Zhu X., Niinemets Ü., Li Z., Sun D., Dong N., Zhang W., Zhou Z., Liu F., Zhang Y., 2021. Enhanced photosynthetic nitrogen use efficiency and increased nitrogen allocation to photosynthetic machinery under cotton domestication. Photosynth. Res. 150, 239-250. https://doi.org/10.1007/s11120- 021-00872-w.
[71] Lei Z., Westerband,C.A., Wright,I.J., He,Y., Zhang,W., Cai,X., Zhou Z., Liu,F., Zhang,Y., 2022b. Leaf trait covariation and controls on leaf mass per area (LMA) following cotton domestication. Ann. Bot. 130, 231-243. https://doi.org/10.1093/aob/mcac086.
[72] Liu S., Cornille A., Decroocq S., Tricon D., Chague A., Eyquard J., Liu W., Giraud T., Decroocq V., 2019. The complex evolutionary history of apricots: Species divergence, gene flow and multiple domestication events. Mol. Ecol. 28, 5299-5314. https://doi.org/10.1111/mec.15296.
[73] Long S.P., Zhu X., Naidu S.L., Ort D.R., 2006. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 29, 315-330. https://doi.org/10.1111/j.1365-3040.2005.01493.x.
[74] Lundström M., Leino M.W., Hagenblad J., 2017. Evolutionary history of the NAM-B1 gene in wild and domesticated tetraploid wheat. BMC Genet. 18, 118. https://doi.org/10.1186/s12863-017-0566-7.
[75] Lush W.M., Wien H.C., 1980. The importance of seed size in early growth of wild and domesticated cowpeas. J. Agric. Sci. 94, 177-182. https://doi.org/10.1017/S0021859600028033.
[76] Mathan J., Singh A., Jathar V., Ranjan A., 2021. High photosynthesis rate in two wild rice species is driven by leaf anatomy mediating high Rubisco activity and electron transport rate. J. Exp. Bot. 72, 7119-7135. https://doi.org/10.1093/jxb/erab313.
[77] Matsuoka Y., Vigouroux Y., Goodman M.M., Sanchez J., G., Buckler E., Doebley J., 2002. A single domestication for maize shown by multilocus microsatellite genotyping. Proc. Natl. Acad. Sci. U.S.A. 99, 6080-6084. https://doi.org/10.1073/pnas.052125199.
[78] McAusland L., Vialet-Chabrand S., Jauregui I., Burridge A., Hubbart-Edwards S., Fryer M.J., King I.P., King J., Pyke K., Edwards K.J., Carmo-Silva E., Lawson T., Murchie E.H., 2020. Variation in key leaf photosynthetic traits across wheat wild relatives is accession dependent not species dependent. New Phytol. 228, 1767-1780. https://doi.org/10.1111/nph.16832.
[79] Meyer R.S., Duval A.E., Jensen H.R., 2012. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol. 196, 29-48. https://doi.org/10.1111/j.1469-8137.2012.04253.x.
[80] Milla R.,2023. Phenotypic evolution of agricultural crops. Funct. Ecol. 37, 976-988. https://doi.org/10.1111/1365-2435.14278.
[81] Milla R., de Diego-Vico N., Martín-Robles N., 2013. Shifts in stomatal traits following the domestication of plant species. J. Exp. Bot. 64, 3137-3146. https://doi.org/10.1093/jxb/ert147.
[82] Milla R., Matesanz S., 2017. Growing larger with domestication: a matter of physiology, morphology or allocation? Plant Biol. 19, 475-483. https://doi.org/10.1111/plb.12545.
[83] Milla R.,Morente-López, J., Alonso-Rodrigo, J.M., Martín-Robles, N., Stuart Chapin, F., 2014. Shifts and disruptions in resource-use trait syndromes during the evolution of herbaceous crops. Proc. R. Soc. B-Biol. Sci. 281, 20141429. https://doi.org/10.1098/rspb.2014.1429.
[84] Milla R., Osborne C.P., Turcotte M.M., Violle C.,2015. Plant domestication through an ecological lens. Trends Ecol. Evol. 30, 463-469. https://doi.org/10.1016/j.tree.2015.06.006.
[85] Moore D.R.J., Cavers P.B., 1985. A comparison of seedling vigour in crop and weed biotypes of proso millet (Panicum miliaceum). Can. J. Bot. 63, 1659-1663. https://doi.org/10.1139/b85-228.
[86] Munoz N., Qi X., Li M., Xie M., Gao Y., Cheung M., Wong F., Lam H.,2016. Improvement in nitrogen fixation capacity could be part of the domestication process in soybean. Heredity 117, 84-93. https://doi.org/10.1038/hdy.2016.27.
[87] Nadal M., Flexas J.,2019. Variation in photosynthetic characteristics with growth form in a water-limited scenario: Implications for assimilation rates and water use efficiencyin crops. Agric. Water Manage. 216, 457-472. https://doi.org/10.1016/j.agwat.2018.09.024.
[88] Navea C., Terrazas T., Delgado-Salinas A., Ramírez-Vallejo P., 2002. Foliar response of wild and domesticated Phaseolus vulgaris L. to water stress. Genet. Resour. Crop Evol. 49, 125-132. https://doi.org/10.1023/A:1014727302512.
[89] Østerberg J.T., Xiang W., Olsen L.I., Edenbrandt A.K., Vedel S.E., Christiansen A., Landes X., Andersen M.M., Pagh P., Sandøe P., Nielsen J., Christensen S.B., Thorsen B.J., Kappel K., Gamborg C., Palmgren M.,2017. Accelerating the domestication of new crops: feasibility and approaches. Trends Plant Sci. 22, 373-384. https://doi.org/10.1016/j.tplants.2017.01.004.
[90] Parry M.A.J., Madgwick P.J., Carvalho J.F.C., Andralojc P.J., 2007. Prospects for increasing photosynthesis by overcoming the limitations of Rubisco. J. Agric. Sci. 145, 31-43.
[91] Peng J., Richards D.E., Hartley N.M., Murphy G.P., Devos K.M., Flintham J.E., Beales J., Fish L.J., Worland A.J., Pelica F., Sudhakar D., Christou P., Snape J.W., Gale M.D., Harberd N.P., 1999. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256-261. https://doi.org/10.1038/22307.
[92] Penuelas J., Sardans J., 2009. Elementary factors. Nature 460, 803-804. https://doi.org/10.1038/460803a.
[93] Poorter H., Garnier E., 2007. Ecological significance of inherent variation in relative growth rate and its components. In: Pugnaire, F.I., Valladares, F. (Eds.), Functional Plant Ecology. CRC Press, Boca Raton, U.S.A., pp. 67-100
[94] Preece C., Livarda A., Christin P., Wallace M., Martin G., Charles M., Jones G., Rees M., Osborne C.P., 2017. How did the domestication of Fertile Crescent grain crops increase their yields? Funct. Ecol. 31, 387-397. https://doi.org/10.1111/1365- 2435.12760.
[95] Preece C., Livarda A., Wallace M., Martin G., Charles M., Christin P., Jones G., Rees M., Osborne C.P., 2015. Were Fertile Crescent crop progenitors higher yielding than other wild species that were never domesticated? New Phytol. 207, 905-913. https://doi.org/10.1111/nph.13353.
[96] Pujol B., Salager J.-L., Beltran M., Bousquet S., McKey D., 2008. Photosynthesis and leaf structure in domesticated cassava (Euphorbiaceae) and a close wild relative: have leaf photosynthetic parameters evolved under domestication? Biotropica 40, 305-312. https://doi.org/10.1111/j.1744-7429.2007.00373.x.
[97] Razifard H., Ramos A., Della Valle A.L., Bodary C., Goetz E., Manser E.J., Li X., Zhang L., Visa S., Tieman D., van der Knaap E., Caicedo A.L., 2020. Genomic evidence for complex domestication history of the cultivated tomato in Latin America. Mol. Biol. Evol. 37, 1118-1132. https://doi.org/10.1093/molbev/msz297.
[98] Reich P.B., Tjoelker M.G., Walters M.B., Vanderklein D.W., Buschena C., 1998. Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Funct. Ecol. 12, 327-338. https://doi.org/10.1046/j.1365-2435.1998.00208.x.
[99] Reich P.B., Walters M.B., Ellsworth D.S., 1991. Leaf age and season influence the relationships between leaf nitrogen, leaf mass per area and photosynthesis in maple and oak trees. Plant Cell Environ. 14, 251-259. https://doi.org/10.1111/j.1365-3040.1991.tb01499.x.
[100] Reich P.B., Walters M.B., Ellsworth D.S., 1997. From tropics to tundra: global convergence in plant functioning. Proc. Natl. Acad. Sci. U.S.A. 94, 13730-13734. https://doi.org/10.1073/pnas.94.25.13730.
[101] Rosenthal J.P., Dirzo R., 1997. Effects of life history, domestication and agronomic selection on plant defence against insects: evidence from maizes and wild relatives. Evol. Ecol. 11, 337-355. https://doi.org/10.1023/A:1018420504439.
[102] Roucou A., Violle C., Fort F., Roumet P., Ecarnot M., Vile D., 2018. Shifts in plant functional strategies over the course of wheat domestication. J. Appl. Ecol. 55, 25-37. https://doi.org/10.1111/1365-2664.13029.
[103] Roumet C., Roy J., 1996. Prediction of the growth response to elevated CO2: a search for physiological criteria in closely related grass species. New Phytol. 134, 615-621. https://doi.org/10.1111/j.1469-8137.1996.tb04926.x.
[104] Sasaki A., Ashikari M., Ueguchi-Tanaka M., Itoh H., Nishimura A., Swapan D., Ishiyama K., Saito T., Kobayashi M., Khush G.S., Kitano H., Matsuoka M., 2002. A mutant gibberellin-synthesis gene in rice. Nature 416, 701-702. https://doi.org/10.1038/416701a.
[105] Scafaro A.P., Von Caemmerer S., Evans J.R., Atwell B.J., 2011. Temperature response of mesophyll conductance in cultivated and wild Oryza species with contrasting mesophyll cell wall thickness: temperature response of mesophyll conductance in rice. Plant Cell Environ. 34, 1999-2008. https://doi.org/10.1111/j.1365-3040.2011.02398.x.
[106] Simpson G.M.,1968. Association between grain yield per plant and photosynthetic area above the flag-leaf node in wheat. Can. J. Plant Sci. 48, 253-260. https://doi.org/10.4141/cjps68-046.
[107] Simpson K.J., Wade R.N., Rees M., Osborne C.P., Hartley S.E., 2017. Still armed after domestication? Impacts of domestication and agronomic selection on silicon defences in cereals. Funct. Ecol. 31, 2108-2117. https://doi.org/10.1111/1365-2435.12935.
[108] Small E.,1996. Adaptations to herbivory in alfalfa (Medicago sativa). Can. J. Bot. 74, 807-822. https://doi.org/10.1139/b96-102.
[109] Smýkal P., Nelson M., Berger J., Von Wettberg E., 2018. The impact of genetic changes during crop domestication. Agronomy 8, 119. https://doi.org/10.3390/agronomy8070119.
[110] Spooner D.M., Núñez J., Trujillo G., Herrera Mdel R., Guzmán F., Ghislain M., 2007. Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. Proc. Natl. Acad. Sci. U.S.A. 104, 19398-19403. https://doi.org/10.1073/pnas.0709796104.
[111] Tang H., Sezen U., Paterson A.H.,2010. Domestication and plant genomes. Curr. Opin. Plant Biol. 13, 160-166. https://doi.org/10.1016/j.pbi.2009.10.008.
[112] Togashi A., Oikawa S., 2021. Leaf productivity and persistence have been improved during soybean (Glycine max) domestication and evolution. J. Plant Res. 134, 223-233. https://doi.org/10.1007/s10265-021-01263-x.
[113] Trněný O., Brus J., Hradilová I., Rathore A., Das R., Kopecký P., Coyne C., Reeves P., Richards C., Smýkal P., 2018. Molecular evidence for two domestication events in the pea crop. Genes 9, 535. https://doi.org/10.3390/genes9110535.
[114] Turcotte M.M., Turley N.E., Johnson M.T.J., 2014. The impact of domestication on resistance to two generalist herbivores across 29 independent domestication events. New Phytol. 204, 671-681. https://doi.org/10.1111/nph.12935.
[115] Uprety D.C., Sirohi G.S., 1987. Comparative study on the effect of water stress on the photosynthesis and water relations of triticale, rye and wheat. J. Agron. Crop Sci. 159, 349-355. https://doi.org/10.1111/j.1439-037X.1987.tb00113.x.
[116] Vilela A.E.,González-Paleo, L., 2015. Changes in resource-use strategy and phenotypic plasticity associated with selection for yield in wild species native to arid environments. J. Arid Environ. 113, 51-58. https://doi.org/10.1016/j.jaridenv.2014.09.005.
[117] Wacker L., Jacomet S., Köner C., 2002. Trends in biomass fractionation in wheat and barley from wild ancestors to modern cultivars. Plant Biol. 4, 258-265. https://doi.org/10.1055/s-2002-25735.
[118] Warschefsky E.J., von Wettberg E.J.B., 2019. Population genomic analysis of mango (Mangifera indica) suggests a complex history of domestication. New Phytol. 222, 2023-2037. https://doi.org/10.1111/nph.15731.
[119] Watanabe N., Evans J., Chow W., 1994. Changes in the photosynthetic properties of Australian wheat cultivars over the last century. Funct. Plant Biol. 21, 169-183. https://doi.org/10.1071/PP9940169.
[120] Weiner J., Andersen S.B., Wille W.K.M., Griepentrog H.W., Olsen J.M., 2010. Evolutionary Agroecology: the potential for cooperative, high density, weed- suppressing cereals. Evol. Appl. 3, 473-479. https://doi.org/10.1111/j.1752- 4571.2010.00144.x.
[121] Wendel J.F., Brubaker C.L., Seelanan T., 2010. The origin and evolution of gossypium. In: Stewart, J.M., Oosterhuis, D.M., Heitholt, J.J., Mauney, J.R. (Eds.), Physiology of Cotton. Springer Netherlands, Dordrecht, Netherlands, pp. 1-18. https://doi.org/10.1007/978-90-481-3195-2_1.
[122] Westoby M., Falster D.S., Moles A.T., Vesk P.A., Wright I.J., 2002. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Evol. Syst. 33, 125-159. https://doi.org/10.1146/annurev.ecolsys.33.010802.150452.
[123] Witkowski E.T.F., Lamont B.B., 1991. Leaf specific mass confounds leaf density and thickness. Oecologia 88, 486-493. https://doi.org/10.1007/BF00317710.
[124] Wright I.J., Reich P.B., Westoby M., Ackerly D.D., Baruch Z., Bongers F., Cavender- Bares J., Chapin T., Cornelissen J.H.C., Diemer M., Flexas J., Garnier E., Groom P.K., Gulias J., Hikosaka K., Lamont B.B., Lee T., Lee W., Lusk C., Midgley J.J., Navas M.-L., Niinemets Ü., Oleksyn J., Osada N., Poorter H., Poot P., Prior L., Pyankov V.I., Roumet C., Thomas S.C., Tjoelker M.G., Veneklaas E.J., Villar R., 2004. The worldwide leaf economics spectrum. Nature 428, 821-827. https://doi.org/10.1038/nature02403.
[125] Wright S.I., Bi I.V., Schroeder S.G., Yamasaki M., Doebley J.F., McMullen M.D., Gaut B.S., 2005. The effects of artificial selection on the maize genome. Science 308, 1310-1314. https://doi.org/10.1126/science.1107891.
[126] Xiong D., Flexas J., Yu T., Peng S., Huang J., 2017. Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza. New Phytol. 213, 572-583. https://doi.org/10.1111/nph.14186.
[127] Yeo M.E., Yeo A.R., Flowers T.J., 1994. Photosynthesis and photorespiration in the genus Oryza. J. Exp. Bot. 45, 553-560. https://doi.org/10.1093/jxb/45.5.553.
[128] Zayed D.,2010. Morphological, physiological and genetic variation of wild and cultivated pea (Pisum sativum). Thesis. Hebron University, Hebron, Palestine.
[129] Zechmeister-Boltenstern S., Keiblinger K.M., Mooshammer M., Peñuelas J., Richter A., Sardans J., Wanek W., 2015. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecol. Monogr. 85, 133-155. https://doi.org/10.1890/14-0777.1.
[130] Zeder M.A.,2015. Core questions in domestication research. Proc. Natl. Acad. Sci. U.S.A. 112, 3191-3198. https://doi.org/10.1073/pnas.1501711112.
[131] Zhao G., Lian Q., Zhang Z., Fu Q., He Y., Ma S., Ruggieri V., Monforte A.J., Wang P., Julca I., Wang H., Liu J., Xu Y., Wang R., Ji J., Xu Z., Kong W., Zhong Y., Shang J., Pereira L., Argyris J., Zhang J., Mayobre C., Pujol M., Oren E., Ou D., Wang J., Sun D., Zhao S., Zhu Y., Li N., Katzir N., Gur A., Dogimont C., Schaefer H., Fan W., Bendahmane A., Fei Z., Pitrat M., Gabaldón T., Lin T., Garcia-Mas J., Xu Y., Huang S., 2019. A comprehensive genome variation map of melon identifies multiple domestication events and loci influencingagronomic traits. Nat. Genet. 51, 1607-1615. https://doi.org/10.1038/s41588-019-0522-8.
[132] Zhao M., Ding Z., Lafitte R., Sacks E., Dimayuga G., Holt D., 2010. Photosynthetic characteristics in Oryza species. Photosynthetica 48, 234-240. https://doi.org/10.1007/s11099-010-0029-0.
[133] Zhou Z., Jiang Y., Wang Z., Gou Z., Lyu J., Li W., Yu Y., Shu L., Zhao Y., Ma Y., Fang C., Shen Y., Liu T., Li C., Li Q., Wu M., Wang M., Wu Y., Dong Y., Wan W., Wang X., Ding Z., Gao Y., Xiang H., Zhu B., Lee S.-H., Wang W., Tian Z., 2015. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 33, 408-414. https://doi.org/10.1038/nbt.3096.
[134] Zhu X., Long S.P., Ort D.R., 2010. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 61, 235-261. https://doi.org/10.1146/annurev-arplant-042809-112206.
[135] Zhu X., Zhu J.,2021. Precision genome editing heralds rapid de novo domestication for new crops. Cell 184, 1133-1134. https://doi.org/10.1016/j.cell.2021.02.004.
[136] Zsögön A., Peres L.E.P., Xiao Y., Yan J., Fernie A.R., 2022. Enhancing crop diversity for food security in the face of climate uncertainty. Plant J. 109, 402-414. https://doi.org/10.1111/tpj.15626.
Funding
** E-mail addresses: daohuahe@nwafu.edu.cn (D. He), * zhangyali_shzu@163.com (Y. Zhang).
PDF

Accesses

Citations

Detail

Sections
Recommended

/