Solid-state NMR Investigation of Zeolite Catalysts

Hexun Zhou , Qiangqiang Xue , Jun Huang

Chemical Research in Chinese Universities ›› : 1 -15.

PDF
Chemical Research in Chinese Universities ›› :1 -15. DOI: 10.1007/s40242-026-5263-5
Review Article
review-article

Solid-state NMR Investigation of Zeolite Catalysts

Author information +
History +
PDF

Abstract

The transition toward sustainable chemical production necessitates highly efficient catalysts for both fossil fuel and biomass conversion. Zeolites, with their crystalline frameworks, tunable pore structures, and well-defined acid sites, offer unparalleled opportunities for selective catalysis in processes ranging from methanol-to-olefins (MTO) and methanol-to-aromatics (MTA) to fluid catalytic cracking (FCC) and biomass upgrading. Solid-state nuclear magnetic resonance (NMR) uniquely enables atomic-level insights into framework connectivity, acid site distribution, and host-guest interactions. This review systematically summarizes the application of various NMR methodologies for zeolite characterization, including probing Brønsted and Lewis acidity, framework topology, and porosity across diverse zeolite topologies. By highlighting these NMR-based strategies, the review provides a comprehensive guide for understanding structure-function relationships in zeolite catalysts and their rational design for sustainable chemical processes.

Keywords

Zeolite / Solid-state nuclear magnetic resonance / Characterization

Cite this article

Download citation ▾
Hexun Zhou, Qiangqiang Xue, Jun Huang. Solid-state NMR Investigation of Zeolite Catalysts. Chemical Research in Chinese Universities 1-15 DOI:10.1007/s40242-026-5263-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cundy C S, Cox P A. Chem. Rev., 2003, 103: 663

[2]

Prodinger S, Derewinski M A. Synthetic Zeolites and Their Characterization, 2020, Amsterdam, Elsevier

[3]

Chang C D, Princeton N J. Production of Gasoline Hydrocarbons, 1974U.S. Patent 3928483

[4]

Chang C D, Lang W H. Process for Manufacturing Olefins, 1977U.S. Patent 4025576

[5]

Yarulina I, Chowdhury A D, Meirer F, Weckhuysen B M, Gascon J. Nat. Catal., 2018, 1: 398

[6]

Olsbye U, Svelle S, Lillerud K P, Wei Z H, Chen Y Y, Li J F, Wang J G, Fan W B. Chem. Soc. Rev., 2015, 44: 7155

[7]

Ilias S, Bhan A. ACS Catal., 2013, 3: 18

[8]

Tian P, Wei Y, Ye M, Liu Z. ACS Catal., 2015, 5: 1922

[9]

Gong X, Çaǧlayan M, Ye Y, Liu K, Gascon J, Chowdhury A D. Chem. Rev., 2022, 122: 14275

[10]

Gong X, Ye Y, Chowdhury A D. ACS Catal., 2022, 12: 15463

[11]

Jiao F, Li J, Pan X, Xiao J, Li H, Ma H, Wei M, Pan Y, Zhou Z, Li M, Miao S, Li J, Zhu Y, Xiao D, He T, Yang J, Qi F, Fu Q, Bao X. Science, 2016, 351: 1065

[12]

Weckhuysen B M, Yu J. Chem. Soc. Rev., 2015, 44: 7022

[13]

Vogt E T C, Weckhuysen B M. Chem. Soc. Rev., 2015, 44: 7342

[14]

Wang W, Xu J, Deng F. Nat. Sci. Rev., 2022, 9: 1265

[15]

Fyfe B. C. A., Thomas J. M., Klinowski J., Gobbi G. C., 1983, 22, 259.

[16]

Biaglow A I, Gorte R J, White D. J. Phys. Chem., 1993, 97: 7135

[17]

Freude D, Hunger M, Pfeifer H. Chem. Phys. Lett., 1982, 91: 307

[18]

Caro J, Bülow M, Richter-Mendau J, Kärger J, Hunger M, Freude D, Rees L V C. J. Chem. Soc., 1987, 83: 1843

[19]

Ivanova I I, Pomakhina E B, Borodina I B, Rebrov A I, Wang W, Weitkamp J, Hunger M. Stud. Surf. Sci. Catal., 2004, 154: 2221

[20]

Hemelsoet K, Van Der Mynsbrugge J, De Wispelaere K, Waroquier M, Van Speybroeck V. ChemPhysChem, 2013, 14: 1526

[21]

Van Speybroeck V, Hemelsoet K, Joos L, Waroquier M, Bell R G, Catlow C R A. Chem. Soc. Rev., 2015, 44: 7044

[22]

Olsbye U, Svelle S, Bjrgen M, Beato P, Janssens T V W, Joensen F, Bordiga S, Lillerud K P. Angew. Chem., Int. Ed., 2012, 51: 5810

[23]

Abrevaya H. Zeolites in Industrial Separation and Catalysis, 2010, 13: 477

[24]

Vogt E T C, Whiting G T, Dutta Chowdhury A, Weckhuysen B M. Adv. Catal., 2015, 58: 143

[25]

Parker S F, Kombanal A J. Catalysts, 2021, 11: 1204

[26]

Li T, Shoinkhorova T, Gascon J, Ruiz-Martinez J. ACS Catal., 2021, 11: 7780

[27]

Gounaris C E, Floudas C A, Wei J. Chem. Eng. Sci., 2006, 61: 7933

[28]

Derouane E G, Gabelica Z. J. Catal., 1980, 489: 486

[29]

Zhai H, Bian C, Yu Y, Zhu L, Guo L, Wang X, Yu Q, Zhu J, Cao X. Crystals, 2019, 9: 338

[30]

Jiang J, Xu Y, Cheng P, Sun Q, Yu J, Corma A, Xu R. Chem. Mater., 2011, 23: 4709

[31]

Chen F J, Yu J. Acc. Chem. Res., 2025, 58: 2402

[32]

Yaremov P S, Shvets A V, Il’in V G. Theor. Exp. Chem., 2007, 43: 306

[33]

Smit B, Maesen T L M. Nature, 2008, 451: 671

[34]

Fu D, Schmidt J E, Ristanović Z, Chowdhury A D, Meirer F, Weckhuysen B M. Angew. Chem., Int. Ed., 2017, 129: 11369

[35]

Fu D, van der Heijden O, Stanciakova K, Schmidt J E, Weckhuysen B M. Angew. Chem., Int. Ed., 2020, 132: 15632

[36]

Fu D, Maris J J E, Stanciakova K, Nikolopoulos N, van der Heijden O, Mandemaker L D B, Siemons M E, Salas Pastene D, Kapitein L C, Rabouw F T, Meirer F, Weckhuysen B M. Angew. Chem., Int. Ed., 2022, 134: 12

[37]

Liu X, Shi J, Yang G, Zhou J, Wang C, Teng J, Wang Y, Xie Z. Commun. Chem., 2021, 4: 1

[38]

Fischer F, Lutz W, Buhl J C, Laevemann E. Microporous Mesoporous Mater., 2018, 262: 258

[39]

Zhou X, Han X, Qu Z, Zhang J, Zeng F, Tang Z, Chen R. ACS Sustain. Chem. Eng., 2024, 12: 6013

[40]

Iliopoulou E F, Stefanidis S D, Kalogiannis K G, Delimitis A, Lappas A A, Triantafyllidis K S. Appl. Catal. B: Environ., 2012, 127: 281

[41]

Blomsma E, Martens J A, Jacobs P A. J. Catal., 1996, 159: 323

[42]

Gallo J M R, Alonso D M, Mellmer M A, Yeap J H, Wong H C, Dumesic J A. Top. Catal., 2013, 56: 1775

[43]

Lu J., Cai X., Zhang H., Huang Y., Liu B., Chinese J. Chem. Eng., 2025, doi:https://doi.org/10.1016/j.cjche.2025.09.013.

[44]

Gomes G J, Costa M B, Bittencourt P R S, Zalazar M F, Arroyo P A. Renew. Energy, 2021, 178: 1

[45]

Zhang C, Wu X, Zhang Y, Wang L, Jin Y, Gao M, Ye M, Wei Y, Liu Z. ACS Catal., 2025, 15: 1553

[46]

Khitev Y P, Ivanova I I, Kolyagin Y G, Ponomareva O A. Appl. Catal. A Gen., 2012, 124: 441

[47]

Catizzone E, Aloise A, Migliori M, Giordano G. J. Energy Chem., 2017, 26: 406

[48]

Tian Z J, Liu H. Ionothermal Synthesis of Molecular Sieves, 2015, 37: 76

[49]

Liu W, Liu X, Gu Y, Liu Y, Yu Z, Lyu Y, Tian Y. Compos. Part B: Eng., 2020, 200: 10831

[50]

Yarulina I, Chowdhury A D, Meirer F, Weckhuysen B M, Gascon J. Nat. Catal., 2018, 1: 398

[51]

Kamaluddin H S, Gong X, Ma P, Narasimharao K, Chowdhury A D, Mokhtar M. Mater. Today Chem., 2022, 26: 362

[52]

Yang L, Wang C, Zhang L, Dai W, Chu Y, Xu J, Wu G, Gao M, Liu W, Xu Z, Wang P, Guan N, Dyballa M, Ye M, Deng F, Fan W, Li L. Nat. Commun., 2021, 12: 4661

[53]

Wang L, Cai K, Qu Y, Gao X, Zhou X, Zhou L, Song H. React. Kinet. Mech. Catal., 2025, 138: 2955

[54]

Carlson T R, Jae J, Lin Y C, Tompsett G A, Huber G W. J. Catal., 2010, 270: 110

[55]

Lee S, Park Y, Choi M. ACS Catal., 2024, 14: 2031

[56]

Peng H, Dong T, Yang S, Chen H, Yang Z, Liu W, He C, Wu P, Tian J, Peng Y, Chu X, Wu D, An T, Wang Y, Dai S. Nat. Commun., 2022, 13: 1

[57]

Zhao J, Wang G, Qin L, Li H, Chen Y, Liu B. Catal. Commun., 2016, 73: 98

[58]

Liu S, Ren J, Zhang H, Lv E, Yang Y, Li Y W. J. Catal., 2016, 335: 11

[59]

Jin W, Wang B, Tuo P, Li C, Li L, Zhao H, Gao X, Shen B. Ind. Eng. Chem. Res., 2018, 57: 4231

[60]

Ni Y, Sun A, Wu X, Hai G, Hu J, Li T, Li G. J. Nat. Gas Chem., 2011, 20: 237

[61]

Demarquay J, Fraissard J. Chem. Phys. Lett., 1987, 136: 314

[62]

Chen F, Deng F, Cheng M, Yue Y, Ye C, Bao X. J. Phys. Chem. B, 2001, 105: 9426

[63]

Javed M A, Komulainen S, Daigle H, Zhang B, Vaara J, Zhou B, Telkki V V. Microporous Mesoporous Mater., 2019, 281: 66

[64]

Kortunov P, Vasenkov S, Kärger J, Valiullin R, Gottschalk P, Elía M F, Perez M, Stöcker M, Drescher B, McElhiney G, Berger C, Gläser R, Weitkamp J. J. Am. Chem. Soc., 2005, 127: 13055.

[65]

Terskikh V V, Moudrakovski I L, Breeze S R, Lang S, Ratcliffe C I, Ripmeester J A, Sayari A. Langmuir., 2002, 18: 5653

[66]

Palčić A, Valtchev V. Appl. Catal. A Gen., 2020, 606: 117795

[67]

Wang C, Chu Y, Xu J, Wang Q, Qi G, Gao P, Zhou X, Deng F. ACS Catal., 2020, 10: 4299

[68]

Zhang Q, Gao S, Yu J. Chem. Rev., 2023, 123: 6039

[69]

Huang H W, Zhu H, Zhang S H, Zhang Q, Li C Y. Journal Fuel Chem. Technol., 2019, 47: 74

[70]

Spagnol M, Gilbert L, Alby D. Industrial Chemistry Library, 1996, 8: 29

[71]

Bellussi G, Carati A, Clerici M G. Preparation of Synthetic Porous Crystalline Materials Containing Oxides of Silicon and Titanium, 1989U. S. Patent 4410501

[72]

Bleken F, Bjørgen M, Palumbo L, Bordiga S, Svelle S, Lillerud K P, Olsbye U. Top. Catal., 2009, 52: 218

[73]

Li S, Huang S J, Shen W, Zhang H, Fang H, Zheng A, Liu S B, Deng F. J. Phys. Chem. C, 2008, 112: 14486

[74]

Guisnet M, Costa L, Ribeiro F R. J. Mol. Catal. A Chem., 2009, 305: 69

[75]

Wang B, Ren L, Zhang J, Peng R, Jin S, Guan Y, Xu H, Wu P. Microporous Mesoporous Mater., 2021, 314: 110894

[76]

Lippmaa E, Mági M, Samoson A, Tarmak M, Engelhardt G. J. Am. Chem. Soc., 1981, 103: 4992

[77]

Tzanis L, Marler B, Gies H. J. Phys. Chem. C, 2013, 117: 4098

[78]

Lunsford J H, Shen W, Rothwell W P. J. Am. Chem. Soc., 1985, 107: 1540

[79]

Zheng A, Huang S J, Chen W H, Wu P H, Zhang H, Lee H K, De Ménorval L C, Deng F, Liu S B. J. Phys. Chem. A, 2008, 112: 7349

[80]

Pires E, Fraile J M. Phys. Chem. Chem. Phys., 2022, 24: 16755

[81]

Gunther W R, Michaelis V K, Griffin R G, Roman-Leshkov Y. J. Phys. Chem. C, 2016, 120: 28533

[82]

Zheng A, Zhang H, Chen L, Yue Y, Ye C, Deng F. J. Phys Chem B, 2007, 111: 3085

[83]

Bornes C, Sardo M, Lin Z, Amelse J, Fernandes A, Ribeiro M F, Geraldes C, Rocha J, Mafra L. Chem. Commun., 2019, 55: 12635

[84]

Zhou H, Gong X, Abou-Hamad E, Ye Y, Zhang X, Ma P, Gascon J, Chowdhury A D. Angew. Chem., Int. Ed., 2024, 63: e202318250

[85]

Xu S, Zheng A, Wei Y, Chen J, Li J, Chu Y, Zhang M, Wang Q, Zhou Y, Wang J. Angew. Chem., Int. Ed., 2013, 52: 11564

[86]

Wang C, Xu J, Deng F. ChemCatChem, 2020, 12: 965

[87]

Ono Y, Mori T. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, 1981, 77: 2209

[88]

Yang M, Fan D, Wei Y, Tian P, Liu Z. Adv. Mater., 2019, 31: 1

[89]

Lin L, Fan M, Sheveleva A M, Han X, Tang Z, Carter J H, da Silva I, Parlett C M A, Tuna F, McInnes E J L, Sastre G, Rudić S, Cavaye H, Parker S F, Cheng Y, Daemen L L, Ramirez-Cuesta A J, Attfield M P, Liu Y, Tang C C, Han B, Yang S. Nat. Commun., 2021, 12: 1

[90]

Wang C, Hu M, Chu Y, Zhou X, Wang Q, Qi G, Li S, Xu J, Deng F. Angew. Chem., Int. Ed., 2020, 59: 7198

[91]

Wang C, Chu Y, Xu J, Wang Q, Qi G, Gao P, Zhou X, Deng F. Angew. Chem., Int. Ed., 2018, 57: 10197

[92]

Wu X, Xu S, Zhang W, Huang J, Li J, Yu B, Wei Y, Liu Z. Angew. Chem., Int. Ed., 2017, 56: 9039

[93]

Liu Y, Müller S, Berger D, Jelic J, Reuter K, Tonigold M, Sanchez-Sanchez M, Lercher J A. Angew. Chem., Int. Ed., 2016, 55: 5723

[94]

Chowdhury A D, Paioni A L, Houben K, Whiting G T, Baldus M, Weckhuysen B M. Angew. Chem., Int. Ed., 2018, 57: 8095

[95]

Hill E A, Richey H G, Rees T C. J. Org. Chem., 1963, 28: 2161

[96]

Wang C, Yi X, Xu J, Qi G, Gao P, Wang W, Chu Y, Wang Q, Feng N, Liu X, Zheng A, Deng F. Chem.-A Eur. J., 2015, 21: 12061

[97]

Sun J, Wang Y. ACS Catal., 2014, 4: 1078

[98]

Zhou X, Wang C, Chu Y, Wang Q, Xu J, Deng F. Chem. Res. Chinese Universities, 2022, 38: 155

[99]

Gołąbek K, Tabor E, Pashkova V, Dedecek J, Tarach K, Góra-Marek K. Commun. Chem., 2020, 3: 1

[100]

Wang W, Jiao J, Jiang Y, Ray S S, Hunger M. ChemPhysChem, 2005, 6: 1467

[101]

Zhou X, Wang C, Chu Y, Xu J, Wang Q, Qi G, Zhao X, Feng N, Deng F. Nat. Commun., 2019, 10: 1

[102]

Zhou H., Cheng J., Zhang X., Zhou X., You X., Wang Y., Cheng K., Chowdhury A. D., ChemSusChem, 2025, 18.???

[103]

Gong X, Ramirez A, Abou-Hamad E, Shoinkhorova T B, Çaǧlayan M, Ye Y, Wang W, Wehbe N, Khairova R, Chowdhury A D, Gascon J. Chem. Catal., 2022, 2: 2328

[104]

Ma P, Zhou H, Li Y, Wang M, Nastase S A F, Zhu M, Cui J, Cavallo L, Cheng K, Chowdhury A D. Chem. Sci., 2024, 15: 11937

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

PDF

29

Accesses

0

Citation

Detail

Sections
Recommended

/