Nitrogen-functionalized Zeolites for Enhanced Cobalt Decontamination

Zhonglin Ma , Lingyi Li , Ke He , Wenqi Zhang , Fu Peng , Wanrong Song , Linwei He , Zhen Jiang , Jie Li , Long Chen , Shuao Wang

Chemical Research in Chinese Universities ›› : 1 -7.

PDF
Chemical Research in Chinese Universities ›› :1 -7. DOI: 10.1007/s40242-026-5261-7
Research Article
research-article

Nitrogen-functionalized Zeolites for Enhanced Cobalt Decontamination

Author information +
History +
PDF

Abstract

Efficient removal of radioactive cobalt ions is essential for ensuring the safety of nuclear power operations. Although natural or synthetic zeolites exhibit moderate removal performance for Co2+, they suffer from insufficient removal depth due to strongly relying on sole cation-exchange mechanism. To tackle this challenge, we successfully synthesized a series of nitrogen-functionalized NaA zeolites via an in situ strategy. Among them, the imidazoline-functionalized zeolite (IM-NaA) exhibits a distribution coefficient (Kd) of 3.95×l06 mL/g, which is an order of magnitude higher than that of pristine NaA, revealing enhanced affinity toward Co2+ ions. These zeolites also feature rapid adsorption kinetics and satisfied selectivity. X-Ray photoelectron spectroscopy (XPS) analysis confirms that the enhanced capture is achieved through the concurrent processes of Na+/Co2+ exchange and coordination between Co2+ and the functionalized nitrogen sites. This study provides an effective strategy for the rational design of zeolite-based adsorbents for the deep decontamination of cobalt ions.

Keywords

Zeolite / Cobalt / Adsorption / In situ synthesis / Functional modification

Cite this article

Download citation ▾
Zhonglin Ma, Lingyi Li, Ke He, Wenqi Zhang, Fu Peng, Wanrong Song, Linwei He, Zhen Jiang, Jie Li, Long Chen, Shuao Wang. Nitrogen-functionalized Zeolites for Enhanced Cobalt Decontamination. Chemical Research in Chinese Universities 1-7 DOI:10.1007/s40242-026-5261-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kintisch E. Science, 2005, 310: 1406

[2]

Dresselhaus M, Thomas I. Nature, 2001, 414: 332

[3]

Vienna J. Int. J. Appl. Glass Sci., 2010, 1: 309

[4]

Rethinasabapathy M, Ghoreishian S, Kwak C, Han Y, Roh C, Huh Y. Coordin. Chem. Rev., 2025, 527: 216410

[5]

Hu B, Hu Q, Chen C, Sun Y, Xu D, Sheng G. Chem. Eng. J., 2017, 322: 66

[6]

Ma F, Zhu W, Cheng W, Chen J, Gao J, Xue Y, Yan Y. J. Water Process Eng., 2023, 53: 103635

[7]

Lim Y, Kim B, Jang J, Lee D. J. Hazard. Mater., 2022, 436: 12924

[8]

Benaissa H, Nasrallah N, Abdi A, Kebir M, Guedioura B, Trari M. J. Radioanal. Nucl. Chem., 2021, 329: 1497

[9]

Anirudhan T, Deepa J, Christa J. J. ColloidInterf. Sci., 2016, 467: 307

[10]

Al-Jubouri S, Holmes S. J. Water Process Eng., 2020, 33: 101059

[11]

Tao S, Wang T, Wu Y, Wang C, Wang G. J. Hazard. Mater., 2021, 415: 125680

[12]

Zhang M, Gu P, Yan S, Liu Y, Zhang G. Sep. Purif. Technol., 2021, 256: 117775

[13]

Wang X, Zhou Y, Men J, Liang C, Jia M. Inorg. Chim. Acta, 2023, 547: 121337

[14]

Hossain F. J. Environ. Radioactiv., 2020, 225: 106423

[15]

Nafti-Mateur M, Jaouadi M, Van der Bruggen B, Naifer K. J. Chem. Technol. Biot., 2023, 99: 343

[16]

Siekierka A, Callahan D, Kujawski W, Dumée L. Desalination, 2024, 580: 117559

[17]

Dhiman S, Gupta B. J. Clean. Prod., 2019, 225: 820

[18]

Kim K, Raymond D, Candeago R, Su X. Nat. Commun., 2021, 12: 6554

[19]

Kabuba J, Banza M. Results Eng., 2020, 8: 100189

[20]

Kyzas G, Deliyanni E, Matis K. Colloid Surface A, 2016, 490: 74

[21]

Ballová S, Pipíška M, Frišták V, Ďuriška L, Horník M, Kaňuchová M, Soja G. Prog. Nucl. Energ., 2020, 129: 103484

[22]

Dehghani M, Yetilmezsoy K, Salari M, Heidarinejad Z, Yousefi M, Sillanpää M. J. Mol. Liq., 2020, 299: 112154

[23]

Yuan G, Tian Y, Liu J, Tu H, Liao J, Yang J, Yang Y, Wang D, Liu N. Chem. Eng. J., 2017, 326: 691

[24]

Mohammed A, Abdel Moamen O, Metwally S, El-Kamash A, Ashour I, Al-Geundi M. Environ. Sci. Pollut. R., 2019, 27: 6824

[25]

Díez E, Miranda R, López J, Jiménez A, Conte N, Rodríguez A. Separations, 2024, 11: 232

[26]

Yin Y, Hu J, Wang J. Environ. Prog. Sustain., 2017, 36: 989

[27]

Saleh H, Moussa H, Mahmoud H, El-Saied F, Dawoud M, Abdel Wahed R. Prog. Nucl. Energ., 2020, 118: 103147

[28]

Khajavian M, Hallajsani A, Ghelichi P. Int. J. Environ. Sci. Technol., 2020, 17: 4774

[29]

Pal A, Ghosh S, Paul A. Bioresource Technol., 2006, 97: 1253

[30]

Mustafa Y, Zaiter M. J. Hazard. Mater., 2011, 196: 228

[31]

Lu X, Shi D, Chen J. Environ. Earth Sci., 2017, 76: 591

[32]

Al-Jubouri S, Holmes S. Chem. Eng. J., 2017, 308: 476

[33]

Al-Jubouri S, Curry N, Holmes S. J. Hazard. Mater., 2016, 320: 241

[34]

Al-Jubouri S, de Haro-Del Rio D, Alfutimie A, Curry N, Holmes S. Micropor. Mesopor. Mater., 2018, 268: 109

[35]

Lonin A, Levenets V, Omelnik O, Shchur A. J. Radioanal. Nucl. Chem., 2022, 331: 5517

[36]

Soliman M, Rashad G, Mahmoud M. Environ. Sci. Pollut. Res., 2019, 26: 10398

[37]

Metwally S, Ayoub R. Appl. Clay Sci., 2016, 126: 33

[38]

Rodríguez-Iznaga I, Rodríguez-Fuentes G, Petranovskii V. Micropor. Mesopor. Mater., 2018, 255: 200

[39]

Gulieva A, Geidarov A, Makhmudov M, Kasumova N. Russ. Metall., 2018, 2018: 605

[40]

Li L, Ren L, Wang D, Chen J, Guo Q, Zhao Y, Zhao F, He L, Li J, Zhang W, Song L, Chen L, Chen L, Wang B, Zhu L, Duan T, Chai Z, Wang S. Sci. China Chem., 2025, 68: 1847

[41]

Choi M, Wu Z, Iglesia E. J. Am. Chem. Soc., 2010, 132: 9129

[42]

Bao W, Zou H, Gan S, Xu X, Ji G, Zheng K. Chem. Res. Chinese Universities, 2013, 29: 126

[43]

Lu X, Wang F, Li X, Shih K, Zeng E. Ind. Eng. Chem. Res., 2016, 55: 8767

[44]

Hudson M, Queen W, Mason J, Fickel D, Lobo R, Brown C. J. Am. Chem. Soc., 2012, 134: 1970

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

PDF

22

Accesses

0

Citation

Detail

Sections
Recommended

/