PDF
Abstract
Carbon-supported transition metal single-atom catalysts (TM-SACs) demonstrate exceptional promise for the electrochemical oxygen reduction reaction (ORR). Here, we carry out density functional theory (DFT) calculations and reveal a linear correlation between the adsorption free energy of the key intermediate OH (ΔGOH) and the TM-OH bond strength. The TM-OH bond strength is governed by the symmetry-dependent contributions of different d orbitals to the bonding and antibonding interactions at the active site. The local in-plane coordination environment modulates the energy levels of the dxy and \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$d_{x^2-y^2}$$\end{document}
orbitals, resulting in the occupancy variation of the out-of-plane d orbitals (dxz, dyz, and \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$d_{z^2}$$\end{document}
). Therefore, we introduce a descriptor (\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\theta_{\rm{OH}}=\theta_{d_{xz}}+\theta_{d_{yz}}+|1-\theta_{d_{z^2}}|$$\end{document}
, \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\theta_{\rm{d_{xz}}}$$\end{document}
, \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\theta_{\rm{d_{yz}}}$$\end{document}
and \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\theta_{d_{z^2}}$$\end{document}
indicating the occupancy of dxz, dyz, and \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$d_{z^2}$$\end{document}
orbitals in the coordinated TM) to predict the catalytic performance of TM-Zx SACs (TM=3d transition metals, Z=N, C, O, x=3, 4, 5) towards ORR. Furthermore, we develop a generalized descriptor φ, which only depends on the geometric and elemental characteristics of the TM, coordinating atoms (Z) and adsorbates. The descriptor can capture both the electronic properties and catalytic activity of TM-Zx-C SACs without the need for additional calculations. Our findings provide an efficient and convenient strategy for optimizing catalytic performance through tailored geometric and electronic configurations.
Keywords
Single atom catalyst
/
Oxygen reduction reaction
/
Rational catalyst design
/
Electrochemical reaction
/
Density functional theory
Cite this article
Download citation ▾
Hui Yang, Lei Tao, Shixuan Du.
Coordination-tailored d-Orbital Occupancy: A Catalytic Descriptor for Single-atom Electrocatalysts in Oxygen Reduction Reaction.
Chemical Research in Chinese Universities 1-10 DOI:10.1007/s40242-026-5259-1
| [1] |
Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Nature Chem., 2011, 3: 634
|
| [2] |
Yang X-F, Wang A, Qiao B, Li J, Liu J, Zhang T. Acc. Chem. Res., 2013, 46: 1740
|
| [3] |
Liu J-C, Tang Y, Wang Y-G, Zhang T, Li J. National Science Review, 2018, 5: 638
|
| [4] |
Chen Y, Ji S, Chen C, Peng Q, Wang D, Li Y. Joule, 2018, 2: 1242
|
| [5] |
Speck F D, Kim J H, Bae G, Joo S H, Mayrhofer K J J, Choi C H, Cherevko S. JACS Au, 2021, 1: 1086
|
| [6] |
Kim J, Kim H, Lee H. ChemSusChem, 2018, 11: 104
|
| [7] |
Zhuo H-Y, Zhang X, Liang J-X, Yu Q, Xiao H, Li J. Chem. Rev., 2020, 120: 12315
|
| [8] |
Peng Y, Lu B, Chen S. Advanced Materials, 2018, 30: 1801995
|
| [9] |
Jiao Y, Zheng Y, Jaroniec M, Qiao S Z. J. Am. Chem. Soc., 2014, 136: 4394
|
| [10] |
Tang C, Chen L, Li H, Li L, Jiao Y, Zheng Y, Xu H, Davey K, Qiao S-Z. J. Am. Chem. Soc., 2021, 143: 7819
|
| [11] |
Ha M, Kim D Y, Umer M, Gladkikh V, Myung C W, Kim K S. Energy Environ. Sci., 2021, 14: 3455
|
| [12] |
Deng C, He R, Shen W, Li M. Phys. Chem. Chem. Phys., 2019, 21: 18589
|
| [13] |
Zhou Y, Gao G, Chu W, Wang L-W. Nanoscale, 2021, 13: 1331
|
| [14] |
Wang Y, Shi R, Shang L, Waterhouse G I N, Zhao J, Zhang Q, Gu L, Zhang T. Angew. Chem. Int. Ed., 2020, 59: 13057
|
| [15] |
Yang Y, Mao K, Gao S, Huang H, Xia G, Lin Z, Jiang P, Wang C, Wang H, Chen Q. Advanced Materials, 2018, 30: 1801732
|
| [16] |
Li R, Wang D. Nano Res., 2022, 15: 6888
|
| [17] |
Kulkarni A, Siahrostami S, Patel A, Nørskov J K. Chem. Rev., 2018, 118: 2302
|
| [18] |
Chen Q, Zhang Z, Zhang R, Hu M, Shi L, Yao Z. Processes, 2023, 11: 361
|
| [19] |
Zhang Q, Guan J. Energy & Environ Materials, 2021, 4: 307
|
| [20] |
Zha S, Wang D, Liu C, Wang W, Mitsuzaki N, Chen Z. Sustainable Energy Fuels, 2022, 6: 3895
|
| [21] |
Zhang E, Tao L, An J, Zhang J, Meng L, Zheng X, Wang Y, Li N, Du S, Zhang J, Wang D, Li Y. Angew. Chem. Int. Ed., 2022, 61: e202117347
|
| [22] |
Qi Z, Zhou Y, Guan R, Fu Y, Baek J. Advanced Materials, 2023, 35: 2210575
|
| [23] |
Sun H, Wang M, Du X, Jiao Y, Liu S, Qian T, Yan Y, Liu C, Liao M, Zhang Q, Meng L, Gu L, Xiong J, Yan C. J. Mater. Chem. A, 2019, 7: 20952
|
| [24] |
Guo P, Chen Y, Tao L, Ji S, Zhang R, Zhang Z, Liang X, Wang D, Li Y, Zhao J. ACS Catal., 2024, 14: 4690
|
| [25] |
Sours T, Patel A, Norskov J, Siahrostami S, Kulkarni A. Journal of Physical Chemistry Letters, 2020, 11: 10029
|
| [26] |
Zhao Z, Zhang L, Xia Z. J. Phys. Chem. C, 2016, 120: 2166
|
| [27] |
Zhu X, Tan X, Wu K, Haw S, Pao C, Su B, Jiang J, Smith S C, Chen J, Amal R, Lu X. Angew. Chem. Int. Ed., 2021, 60: 21911
|
| [28] |
Zhong W, Qiu Y, Shen H, Wang X, Yuan J, Jia C, Bi S, Jiang J. J. Am. Chem. Soc., 2021, 143: 4405
|
| [29] |
Chen Z, Niu H, Ding J, Liu H, Chen P, Lu Y, Lu Y, Zuo W, Han L, Guo Y, Hung S, Zhai Y. Angew. Chem. Int. Ed., 2021, 60: 25404
|
| [30] |
Xu H, Cheng D, Cao D, Zeng X C. Nat. Catal., 2024, 7: 207
|
| [31] |
Kresse G, Furthmüller J. Computational Materials Science, 1996, 6: 15
|
| [32] |
Kresse G, Furthmüller J. Phys. Rev. B, 1996, 54: 11169
|
| [33] |
Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77: 3865
|
| [34] |
Kresse G, Joubert D. Phys. Rev. B, 1999, 59: 1758
|
| [35] |
Grimme S, Antony J, Ehrlich S, Krieg H. the Journal of Chemical Physics, 2010, 132: 154104
|
| [36] |
Deringer V L, Tchougréeff A L, Dronskowski R. J. Phys. Chem. A, 2011, 115: 5461
|
| [37] |
Maintz S, Deringer V L, Tchougréeff A L, Dronskowski R. J. Comput Chem., 2016, 37: 1030
|
| [38] |
Liu J. ACS Catal., 2017, 7: 34
|
| [39] |
Haynes W M, Lide D R, Bruno T J Eds. CRC Handbook of Chemistry and Physics, 201697th Ed.
|
| [40] |
Xu H, Cheng D, Cao D, Zeng X C. Nat. Catal., 2018, 1: 339
|
| [41] |
Cheng L, Huang H, Lin Z, Yang Y, Yuan Q, Hu L, Wang C, Chen Q. Journal of Colloid and Interface Science, 2021, 594: 466
|
| [42] |
Elmouwahidi A, Bailón-García E, Pérez-Cadenas A F, Castelo-Quibén J, Carrasco-Marín F. Carbon, 2019, 144: 289
|
| [43] |
Hai X, Zhao X, Guo N, Yao C, Chen C, Liu W, Du Y, Yan H, Li J, Chen Z, Li X, Li Z, Xu H, Lyu P, Zhang J, Lin M, Su C, Pennycook S J, Zhang C, Xi S, Lu J. ACS Catal., 2020, 10: 5862
|
| [44] |
Yang L, Xu H, Liu H, Zeng X, Cheng D, Huang Y, Zheng L, Cao R, Cao D. Research, 2020, 2020: 2020/7593023
|
| [45] |
Xu Y, Yan Y, Pang M, Wang L, Zhao Y, Deng C, Cui Y, Guo X, Wang P, Ding W. Applied Surface Science, 2021, 560: 150054
|
| [46] |
Zhang T, Wang F, Yang C, Han X, Liang C, Zhang Z, Li Y, Han A, Liu J, Liu B. Chem. Catalysis, 2022, 2: 836
|
| [47] |
Li J, Chen S, Yang N, Deng M, Ibraheem S, Deng J, Li J, Li L, Wei Z. Angewandte Chemie, 2019, 131: 7109
|
| [48] |
Luo J, Zhang Y, Lu Z, Liu C, Xu Y, Chen H, Wang Q, Wu D, Dang D, Deng Y, Rao P, Deng P, Li J, Miao Z, Tian X. Angew. Chem. Int. Ed., 2025, 64: e202500500
|
| [49] |
Luo E, Zhang H, Wang X, Gao L, Gong L, Zhao T, Jin Z, Ge J, Jiang Z, Liu C, Xing W. Angewandte Chemie, 2019, 131: 12599
|
| [50] |
Huo J, Cao X, Tian Y, Li L, Qu J, Xie Y, Nie X, Zhao Y, Zhang J, Liu H. Nanoscale, 2023, 15: 5448
|
| [51] |
Li J, Chen M, Cullen D A, Hwang S, Wang M, Li B, Liu K, Karakalos S, Lucero M, Zhang H, Lei C, Xu H, Sterbinsky G E, Feng Z, Su D, More K L, Wang G, Wang Z, Wu G. Nat. Catal., 2018, 1: 935
|
| [52] |
Li Y, Ding Y, Zhang B, Huang Y, Qi H, Das P, Zhang L, Wang X, Wu Z-S, Bao X. Energy Environ. Sci., 2023, 16: 2629
|
| [53] |
Xu H, Wang D, Yang P, Du L, Lu X, Li R, Liu L, Zhang J, An M. Applied Catalysis B: Environmental, 2022, 305: 121040
|
| [54] |
Yu Q, Lian S, Li J, Yu R, Xi S, Wu J, Zhao D, Mai L, Zhou L. J. Mater. Chem. A, 2020, 8: 6076
|
RIGHTS & PERMISSIONS
Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.