Coordination-tailored d-Orbital Occupancy: A Catalytic Descriptor for Single-atom Electrocatalysts in Oxygen Reduction Reaction

Hui Yang , Lei Tao , Shixuan Du

Chemical Research in Chinese Universities ›› : 1 -10.

PDF
Chemical Research in Chinese Universities ›› :1 -10. DOI: 10.1007/s40242-026-5259-1
Research Article
research-article

Coordination-tailored d-Orbital Occupancy: A Catalytic Descriptor for Single-atom Electrocatalysts in Oxygen Reduction Reaction

Author information +
History +
PDF

Abstract

Carbon-supported transition metal single-atom catalysts (TM-SACs) demonstrate exceptional promise for the electrochemical oxygen reduction reaction (ORR). Here, we carry out density functional theory (DFT) calculations and reveal a linear correlation between the adsorption free energy of the key intermediate OH (ΔGOH) and the TM-OH bond strength. The TM-OH bond strength is governed by the symmetry-dependent contributions of different d orbitals to the bonding and antibonding interactions at the active site. The local in-plane coordination environment modulates the energy levels of the dxy and

dx2y2
orbitals, resulting in the occupancy variation of the out-of-plane d orbitals (dxz, dyz, and
dz2
). Therefore, we introduce a descriptor (
θOH=θdxz+θdyz+|1θdz2|
,
θdxz
,
θdyz
and
θdz2
indicating the occupancy of dxz, dyz, and
dz2
orbitals in the coordinated TM) to predict the catalytic performance of TM-Zx SACs (TM=3d transition metals, Z=N, C, O, x=3, 4, 5) towards ORR. Furthermore, we develop a generalized descriptor φ, which only depends on the geometric and elemental characteristics of the TM, coordinating atoms (Z) and adsorbates. The descriptor can capture both the electronic properties and catalytic activity of TM-Zx-C SACs without the need for additional calculations. Our findings provide an efficient and convenient strategy for optimizing catalytic performance through tailored geometric and electronic configurations.

Keywords

Single atom catalyst / Oxygen reduction reaction / Rational catalyst design / Electrochemical reaction / Density functional theory

Cite this article

Download citation ▾
Hui Yang, Lei Tao, Shixuan Du. Coordination-tailored d-Orbital Occupancy: A Catalytic Descriptor for Single-atom Electrocatalysts in Oxygen Reduction Reaction. Chemical Research in Chinese Universities 1-10 DOI:10.1007/s40242-026-5259-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Nature Chem., 2011, 3: 634

[2]

Yang X-F, Wang A, Qiao B, Li J, Liu J, Zhang T. Acc. Chem. Res., 2013, 46: 1740

[3]

Liu J-C, Tang Y, Wang Y-G, Zhang T, Li J. National Science Review, 2018, 5: 638

[4]

Chen Y, Ji S, Chen C, Peng Q, Wang D, Li Y. Joule, 2018, 2: 1242

[5]

Speck F D, Kim J H, Bae G, Joo S H, Mayrhofer K J J, Choi C H, Cherevko S. JACS Au, 2021, 1: 1086

[6]

Kim J, Kim H, Lee H. ChemSusChem, 2018, 11: 104

[7]

Zhuo H-Y, Zhang X, Liang J-X, Yu Q, Xiao H, Li J. Chem. Rev., 2020, 120: 12315

[8]

Peng Y, Lu B, Chen S. Advanced Materials, 2018, 30: 1801995

[9]

Jiao Y, Zheng Y, Jaroniec M, Qiao S Z. J. Am. Chem. Soc., 2014, 136: 4394

[10]

Tang C, Chen L, Li H, Li L, Jiao Y, Zheng Y, Xu H, Davey K, Qiao S-Z. J. Am. Chem. Soc., 2021, 143: 7819

[11]

Ha M, Kim D Y, Umer M, Gladkikh V, Myung C W, Kim K S. Energy Environ. Sci., 2021, 14: 3455

[12]

Deng C, He R, Shen W, Li M. Phys. Chem. Chem. Phys., 2019, 21: 18589

[13]

Zhou Y, Gao G, Chu W, Wang L-W. Nanoscale, 2021, 13: 1331

[14]

Wang Y, Shi R, Shang L, Waterhouse G I N, Zhao J, Zhang Q, Gu L, Zhang T. Angew. Chem. Int. Ed., 2020, 59: 13057

[15]

Yang Y, Mao K, Gao S, Huang H, Xia G, Lin Z, Jiang P, Wang C, Wang H, Chen Q. Advanced Materials, 2018, 30: 1801732

[16]

Li R, Wang D. Nano Res., 2022, 15: 6888

[17]

Kulkarni A, Siahrostami S, Patel A, Nørskov J K. Chem. Rev., 2018, 118: 2302

[18]

Chen Q, Zhang Z, Zhang R, Hu M, Shi L, Yao Z. Processes, 2023, 11: 361

[19]

Zhang Q, Guan J. Energy & Environ Materials, 2021, 4: 307

[20]

Zha S, Wang D, Liu C, Wang W, Mitsuzaki N, Chen Z. Sustainable Energy Fuels, 2022, 6: 3895

[21]

Zhang E, Tao L, An J, Zhang J, Meng L, Zheng X, Wang Y, Li N, Du S, Zhang J, Wang D, Li Y. Angew. Chem. Int. Ed., 2022, 61: e202117347

[22]

Qi Z, Zhou Y, Guan R, Fu Y, Baek J. Advanced Materials, 2023, 35: 2210575

[23]

Sun H, Wang M, Du X, Jiao Y, Liu S, Qian T, Yan Y, Liu C, Liao M, Zhang Q, Meng L, Gu L, Xiong J, Yan C. J. Mater. Chem. A, 2019, 7: 20952

[24]

Guo P, Chen Y, Tao L, Ji S, Zhang R, Zhang Z, Liang X, Wang D, Li Y, Zhao J. ACS Catal., 2024, 14: 4690

[25]

Sours T, Patel A, Norskov J, Siahrostami S, Kulkarni A. Journal of Physical Chemistry Letters, 2020, 11: 10029

[26]

Zhao Z, Zhang L, Xia Z. J. Phys. Chem. C, 2016, 120: 2166

[27]

Zhu X, Tan X, Wu K, Haw S, Pao C, Su B, Jiang J, Smith S C, Chen J, Amal R, Lu X. Angew. Chem. Int. Ed., 2021, 60: 21911

[28]

Zhong W, Qiu Y, Shen H, Wang X, Yuan J, Jia C, Bi S, Jiang J. J. Am. Chem. Soc., 2021, 143: 4405

[29]

Chen Z, Niu H, Ding J, Liu H, Chen P, Lu Y, Lu Y, Zuo W, Han L, Guo Y, Hung S, Zhai Y. Angew. Chem. Int. Ed., 2021, 60: 25404

[30]

Xu H, Cheng D, Cao D, Zeng X C. Nat. Catal., 2024, 7: 207

[31]

Kresse G, Furthmüller J. Computational Materials Science, 1996, 6: 15

[32]

Kresse G, Furthmüller J. Phys. Rev. B, 1996, 54: 11169

[33]

Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77: 3865

[34]

Kresse G, Joubert D. Phys. Rev. B, 1999, 59: 1758

[35]

Grimme S, Antony J, Ehrlich S, Krieg H. the Journal of Chemical Physics, 2010, 132: 154104

[36]

Deringer V L, Tchougréeff A L, Dronskowski R. J. Phys. Chem. A, 2011, 115: 5461

[37]

Maintz S, Deringer V L, Tchougréeff A L, Dronskowski R. J. Comput Chem., 2016, 37: 1030

[38]

Liu J. ACS Catal., 2017, 7: 34

[39]

Haynes W M, Lide D R, Bruno T J Eds. CRC Handbook of Chemistry and Physics, 201697th Ed.

[40]

Xu H, Cheng D, Cao D, Zeng X C. Nat. Catal., 2018, 1: 339

[41]

Cheng L, Huang H, Lin Z, Yang Y, Yuan Q, Hu L, Wang C, Chen Q. Journal of Colloid and Interface Science, 2021, 594: 466

[42]

Elmouwahidi A, Bailón-García E, Pérez-Cadenas A F, Castelo-Quibén J, Carrasco-Marín F. Carbon, 2019, 144: 289

[43]

Hai X, Zhao X, Guo N, Yao C, Chen C, Liu W, Du Y, Yan H, Li J, Chen Z, Li X, Li Z, Xu H, Lyu P, Zhang J, Lin M, Su C, Pennycook S J, Zhang C, Xi S, Lu J. ACS Catal., 2020, 10: 5862

[44]

Yang L, Xu H, Liu H, Zeng X, Cheng D, Huang Y, Zheng L, Cao R, Cao D. Research, 2020, 2020: 2020/7593023

[45]

Xu Y, Yan Y, Pang M, Wang L, Zhao Y, Deng C, Cui Y, Guo X, Wang P, Ding W. Applied Surface Science, 2021, 560: 150054

[46]

Zhang T, Wang F, Yang C, Han X, Liang C, Zhang Z, Li Y, Han A, Liu J, Liu B. Chem. Catalysis, 2022, 2: 836

[47]

Li J, Chen S, Yang N, Deng M, Ibraheem S, Deng J, Li J, Li L, Wei Z. Angewandte Chemie, 2019, 131: 7109

[48]

Luo J, Zhang Y, Lu Z, Liu C, Xu Y, Chen H, Wang Q, Wu D, Dang D, Deng Y, Rao P, Deng P, Li J, Miao Z, Tian X. Angew. Chem. Int. Ed., 2025, 64: e202500500

[49]

Luo E, Zhang H, Wang X, Gao L, Gong L, Zhao T, Jin Z, Ge J, Jiang Z, Liu C, Xing W. Angewandte Chemie, 2019, 131: 12599

[50]

Huo J, Cao X, Tian Y, Li L, Qu J, Xie Y, Nie X, Zhao Y, Zhang J, Liu H. Nanoscale, 2023, 15: 5448

[51]

Li J, Chen M, Cullen D A, Hwang S, Wang M, Li B, Liu K, Karakalos S, Lucero M, Zhang H, Lei C, Xu H, Sterbinsky G E, Feng Z, Su D, More K L, Wang G, Wang Z, Wu G. Nat. Catal., 2018, 1: 935

[52]

Li Y, Ding Y, Zhang B, Huang Y, Qi H, Das P, Zhang L, Wang X, Wu Z-S, Bao X. Energy Environ. Sci., 2023, 16: 2629

[53]

Xu H, Wang D, Yang P, Du L, Lu X, Li R, Liu L, Zhang J, An M. Applied Catalysis B: Environmental, 2022, 305: 121040

[54]

Yu Q, Lian S, Li J, Yu R, Xi S, Wu J, Zhao D, Mai L, Zhou L. J. Mater. Chem. A, 2020, 8: 6076

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

19

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/