PDF
Abstract
Hydrogels have emerged as a promising class of soft materials, particularly valued for their biocompatibility and high-water content. However, conventional hydrogels are fundamentally limited by their poor mechanical stretchability and lack of self-healing capabilities, severely restricting their practical applications. Herein, we report a simple yet effective strategy to significantly enhance both the stretchability and self-healing capability of PVA-based (PVA: polyvinyl alcohol) organohydrogels by introducing glucose as a dynamic multi-hydroxyl crosslinker. The abundant hydroxyl groups on glucose molecules form additional dynamic hydrogen bonds with the PVA matrix, resulting in a denser and more dynamic physically cross-linked network. The resulting glucose-PVA organohydrogel exhibits remarkable performance: ultrahigh stretchability (16300 strain, representing a 12-fold improvement over glucose-free systems), dynamic bond-mediated ex-situ self-healing, and injectability. Remarkably, the synergistic effect between glucose-mediated plasticization and the poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) conductive network enables simultaneous acquisition of both resistive strain signals and electrophysiological signals, demonstrating significant potential for applications in disease diagnosis and motion analysis. This work not only provides a high-performance soft material for potential applications in flexible electronics and biomedical devices but also offers a novel strategy for designing advanced multifunctional gels.
Keywords
Polyvinyl alcohol (PVA) organohydrogel
/
Glucose plasticization
/
Ultra-stretchability
/
Ex-situ self-healing
/
Electric sensor
Cite this article
Download citation ▾
Guangyan Wang, Hongji Wang, Shumin Qian, Xinyi Yao, Jianliang Bai, Cuixing Xu, Wenwei Lei.
Highly Stretchable and Ex-situ Self-healing Organohydrogel for Flexible Electric Sensors.
Chemical Research in Chinese Universities 1-10 DOI:10.1007/s40242-026-5244-8
| [1] |
Cuo A, Cao Q N, Fang H P, Tian H Y. J. Control. Release, 2025, 385: 114021
|
| [2] |
Muhammad U A K, Stojanovi G M, Abdullah M F B, Alireza D P, Hany E M, Nureddin A, Anwarul H. Int. J. Biol. Macromol, 2024, 254: 127882
|
| [3] |
Du L M, Shi W, Gao H, Jia H X. Adv. Funct. Mater., 2024, 34: 2314123
|
| [4] |
Zhuo S Y, Song C, Rong Q F, Zhao T Y, Liu M J. Nat. Commun., 2022, 13: 1743
|
| [5] |
Sun Y Z, He W Y, Jiang C, Li J, Liu J L, Liu M J. Nano-Micro Letter, 2025, 17: 109
|
| [6] |
Ren K Y, Fu R M, Tian Y, Kang X C, Zhou L, Tan G X. Chin. J. Anal. Chem., 2024, 52: 1
|
| [7] |
Ma X Y, Zhang Y Y, Sun F X, Zhang L Y, Ma C B. Chin. J. Anal. Chem., 2024, 52: 945
|
| [8] |
Su X, Wang H, Tian Z L, Duan X C, Chai Z H, Feng Y T, Wang Y X, Fan Y, Huang J Y. ACS Appl. Mater. Interfaces, 2020, 12: 29757
|
| [9] |
Shi W, Zhou T X, He B B, Huang J, Liu M J. Angew. Chem. Int. Ed. Engl., 2024, 63: e202401845
|
| [10] |
Chen W P, Hao D Z, Hao W J, Guo X L, Jiang L. ACS Appl. Mater. Interfaces, 2018, 10: 1258
|
| [11] |
Cao X, Liu H Z, Yang X H, Tian J H, Luo B H, Liu M X. Compos. Sci. Technol., 2020, 191: 108071
|
| [12] |
Yang Y, Wang P F, Zhang G J, He S, Xu B C. J. Compos. Sci., 2024, 8: 46
|
| [13] |
Shukla A, Syaifie P H, Rochman N T, Syaifullah S J, Jauhar M M, Mardliyati E. Biomed. Mater., 2025, 20: 022010
|
| [14] |
Pham T N, Jiang Y S, Su C F, Jan J S. Int. J. Biol. Macromol., 2020, 146: 1050
|
| [15] |
Ge J C, Wu G R, Yoon S K, Kim M S, Choi N J. Nanomaterials, 2021, 11: 2514
|
| [16] |
Xiang C X, Zhang X Y, Zhang J N, Chen W Y, Li X N, Wei X C, Li P C. J. Funct. Biomater., 2022, 13: 140
|
| [17] |
Liang X X, Zhong H J, Ding H Y, Yu B, Ma X, Liu X Y, Chong C M, He J W. Polymers, 2024, 16: 2755
|
| [18] |
Zhao Z G, Cao Z Q, Wu Z X, Du W X, Meng X, Chen H W, Jiang L, Liu M J. Sci. Adv., 2024, 10: eadl2737
|
| [19] |
Zhang L H, Yan H, Zhou J J, Zhao Z G, Huang J, Chen L, Ru Y F, Liu M J. Adv. Mater., 2023, 35: 2202193
|
| [20] |
Rong Q F, Lei W W, Chen L, Yin Y A, Zhou J J, Liu M J. Angew. Chem. Int. Ed. Engl., 2017, 56: 14159
|
| [21] |
Zhao T Y, Wang G Y, Hao D Z, Chen L, Liu K S, Liu M J. Adv. Funct. Mater., 2018, 28: 1800793
|
| [22] |
Yin B, Aminlashgari N, Yang X, Hakkarainen M. Eur. Polym. J., 2014, 58: 34
|
| [23] |
Wu Y T, Gao S, Zhao J J, Kong S, Wang H, Wang W T, Hou H X. J. Sci. Food Agr., 2024, 105: 1105
|
| [24] |
Dimakos V, Taylor M S. Chem. Rev., 2018, 118: 11457
|
| [25] |
Torres F G, Troncoso O P, Pisani A, Gatto F, Bardi G. Int. J. Mol. Sci., 2019, 20: 5092
|
| [26] |
Kong S W, Zhao C Q, Sun Y Z, Huang J, Zhang L H, Ru Y F, Zhou H S, Zhou T X, Liu M J. Matter, 2024, 7: 2250
|
| [27] |
Hyemin K, Ilhwan R, Geunpyo C, Yim S Y. ACS Appl. Energy Mater., 2023, 6: 537
|
| [28] |
Han Z L, Wang P, Lu Y C, Jia Z, Qu S X, Yang W. Sci. Adv., 2022, 8: eabl5066
|
| [29] |
Ye Y H, Niu X, Zheng K, Wan Z M, Zhang W C, Hua Q, Zhu J Y, Qiu Z, Wang S H, Liu H, Renneckar S, Rojas O, Jiang F. Mater. Horiz., 2025, 12: 1878
|
| [30] |
Song Z H, Sun J R, Williams G R, Liao X Y, Xiao Z Y, Tang Y X, Zhang W, Chen Y L, Liu Y. Int. J. Biol. Macromol., 2025, 318: 144940
|
| [31] |
Lin P C, Wong Y T, Su Y A, Chen W C, Chueh C C. ACS Sustain. Chem. Eng., 2018, 6: 14621
|
| [32] |
Xu W J, Newton M A A, Xin B J, Chen Z M. J. Mater. Sci., 2024, 59: 104
|
| [33] |
Sun X X, Luo C H, Luo F L. Eur. Polym. J., 2020, 124: 109465
|
| [34] |
Wu F, Gao J F, Xiang Y, Yang J M. Polymers, 2023, 15: 3782
|
| [35] |
Jiang X C, Jiang T, Zhang X F, Dai H, Zhang X. Polym. Eng. Sci., 2012, 52: 2245
|
| [36] |
Kahvand F, Fasihi M. Int. J. Biol. Macromol., 2019, 140: 775
|
| [37] |
Xie J Y, Jin X R, Cheng H, Chen W, Yu W C, Wang L L. Ind. Crop. Prod., 2024, 220: 119246
|
| [38] |
Rondonuwu F S, Setiawan A, Muninggar J, Karwur F F. IOP Conf. Ser., Mater. Sci. Eng., 2020, 959: 012003
|
| [39] |
Lv R L, Cao X, Zhang T Y, Ji W X, Muhammad U, Chen J, Wei Y. Carbohydr. Polym., 2025, 351: 123111
|
| [40] |
Ai J Y, Li K, Li J B, Yu F, Ma J. Int. J. Biol. Macromol., 2021, 172: 66
|
| [41] |
Xiao Z B, Li Q F, Liu H Q, Zhao Q X, Niu Y W, Zhao D. Eur. Polym. J., 2022, 173: 111277
|
| [42] |
He H, Zhang L, Yue S Z, Yu S Z, Wei J, Ouyang J Y. Macromolecules, 2021, 54: 1234
|
| [43] |
Lee J, Kim S, Kim J W, Kim J Y, Choi Y, Park M, Kim D S, Lee H, Kim S, Kim Y, Ha J S. Small, 2025, 21: 2409365
|
| [44] |
Pei W H, Zhang H, Wang Y J, Guo X H, Xing X, Huang Y. IEEE Trans. Biomed. Eng., 2016, 64: 463
|
RIGHTS & PERMISSIONS
Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.