Highly Stretchable and Ex-situ Self-healing Organohydrogel for Flexible Electric Sensors

Guangyan Wang , Hongji Wang , Shumin Qian , Xinyi Yao , Jianliang Bai , Cuixing Xu , Wenwei Lei

Chemical Research in Chinese Universities ›› : 1 -10.

PDF
Chemical Research in Chinese Universities ›› :1 -10. DOI: 10.1007/s40242-026-5244-8
Research Article
research-article

Highly Stretchable and Ex-situ Self-healing Organohydrogel for Flexible Electric Sensors

Author information +
History +
PDF

Abstract

Hydrogels have emerged as a promising class of soft materials, particularly valued for their biocompatibility and high-water content. However, conventional hydrogels are fundamentally limited by their poor mechanical stretchability and lack of self-healing capabilities, severely restricting their practical applications. Herein, we report a simple yet effective strategy to significantly enhance both the stretchability and self-healing capability of PVA-based (PVA: polyvinyl alcohol) organohydrogels by introducing glucose as a dynamic multi-hydroxyl crosslinker. The abundant hydroxyl groups on glucose molecules form additional dynamic hydrogen bonds with the PVA matrix, resulting in a denser and more dynamic physically cross-linked network. The resulting glucose-PVA organohydrogel exhibits remarkable performance: ultrahigh stretchability (16300 strain, representing a 12-fold improvement over glucose-free systems), dynamic bond-mediated ex-situ self-healing, and injectability. Remarkably, the synergistic effect between glucose-mediated plasticization and the poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) conductive network enables simultaneous acquisition of both resistive strain signals and electrophysiological signals, demonstrating significant potential for applications in disease diagnosis and motion analysis. This work not only provides a high-performance soft material for potential applications in flexible electronics and biomedical devices but also offers a novel strategy for designing advanced multifunctional gels.

Keywords

Polyvinyl alcohol (PVA) organohydrogel / Glucose plasticization / Ultra-stretchability / Ex-situ self-healing / Electric sensor

Cite this article

Download citation ▾
Guangyan Wang, Hongji Wang, Shumin Qian, Xinyi Yao, Jianliang Bai, Cuixing Xu, Wenwei Lei. Highly Stretchable and Ex-situ Self-healing Organohydrogel for Flexible Electric Sensors. Chemical Research in Chinese Universities 1-10 DOI:10.1007/s40242-026-5244-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cuo A, Cao Q N, Fang H P, Tian H Y. J. Control. Release, 2025, 385: 114021

[2]

Muhammad U A K, Stojanovi G M, Abdullah M F B, Alireza D P, Hany E M, Nureddin A, Anwarul H. Int. J. Biol. Macromol, 2024, 254: 127882

[3]

Du L M, Shi W, Gao H, Jia H X. Adv. Funct. Mater., 2024, 34: 2314123

[4]

Zhuo S Y, Song C, Rong Q F, Zhao T Y, Liu M J. Nat. Commun., 2022, 13: 1743

[5]

Sun Y Z, He W Y, Jiang C, Li J, Liu J L, Liu M J. Nano-Micro Letter, 2025, 17: 109

[6]

Ren K Y, Fu R M, Tian Y, Kang X C, Zhou L, Tan G X. Chin. J. Anal. Chem., 2024, 52: 1

[7]

Ma X Y, Zhang Y Y, Sun F X, Zhang L Y, Ma C B. Chin. J. Anal. Chem., 2024, 52: 945

[8]

Su X, Wang H, Tian Z L, Duan X C, Chai Z H, Feng Y T, Wang Y X, Fan Y, Huang J Y. ACS Appl. Mater. Interfaces, 2020, 12: 29757

[9]

Shi W, Zhou T X, He B B, Huang J, Liu M J. Angew. Chem. Int. Ed. Engl., 2024, 63: e202401845

[10]

Chen W P, Hao D Z, Hao W J, Guo X L, Jiang L. ACS Appl. Mater. Interfaces, 2018, 10: 1258

[11]

Cao X, Liu H Z, Yang X H, Tian J H, Luo B H, Liu M X. Compos. Sci. Technol., 2020, 191: 108071

[12]

Yang Y, Wang P F, Zhang G J, He S, Xu B C. J. Compos. Sci., 2024, 8: 46

[13]

Shukla A, Syaifie P H, Rochman N T, Syaifullah S J, Jauhar M M, Mardliyati E. Biomed. Mater., 2025, 20: 022010

[14]

Pham T N, Jiang Y S, Su C F, Jan J S. Int. J. Biol. Macromol., 2020, 146: 1050

[15]

Ge J C, Wu G R, Yoon S K, Kim M S, Choi N J. Nanomaterials, 2021, 11: 2514

[16]

Xiang C X, Zhang X Y, Zhang J N, Chen W Y, Li X N, Wei X C, Li P C. J. Funct. Biomater., 2022, 13: 140

[17]

Liang X X, Zhong H J, Ding H Y, Yu B, Ma X, Liu X Y, Chong C M, He J W. Polymers, 2024, 16: 2755

[18]

Zhao Z G, Cao Z Q, Wu Z X, Du W X, Meng X, Chen H W, Jiang L, Liu M J. Sci. Adv., 2024, 10: eadl2737

[19]

Zhang L H, Yan H, Zhou J J, Zhao Z G, Huang J, Chen L, Ru Y F, Liu M J. Adv. Mater., 2023, 35: 2202193

[20]

Rong Q F, Lei W W, Chen L, Yin Y A, Zhou J J, Liu M J. Angew. Chem. Int. Ed. Engl., 2017, 56: 14159

[21]

Zhao T Y, Wang G Y, Hao D Z, Chen L, Liu K S, Liu M J. Adv. Funct. Mater., 2018, 28: 1800793

[22]

Yin B, Aminlashgari N, Yang X, Hakkarainen M. Eur. Polym. J., 2014, 58: 34

[23]

Wu Y T, Gao S, Zhao J J, Kong S, Wang H, Wang W T, Hou H X. J. Sci. Food Agr., 2024, 105: 1105

[24]

Dimakos V, Taylor M S. Chem. Rev., 2018, 118: 11457

[25]

Torres F G, Troncoso O P, Pisani A, Gatto F, Bardi G. Int. J. Mol. Sci., 2019, 20: 5092

[26]

Kong S W, Zhao C Q, Sun Y Z, Huang J, Zhang L H, Ru Y F, Zhou H S, Zhou T X, Liu M J. Matter, 2024, 7: 2250

[27]

Hyemin K, Ilhwan R, Geunpyo C, Yim S Y. ACS Appl. Energy Mater., 2023, 6: 537

[28]

Han Z L, Wang P, Lu Y C, Jia Z, Qu S X, Yang W. Sci. Adv., 2022, 8: eabl5066

[29]

Ye Y H, Niu X, Zheng K, Wan Z M, Zhang W C, Hua Q, Zhu J Y, Qiu Z, Wang S H, Liu H, Renneckar S, Rojas O, Jiang F. Mater. Horiz., 2025, 12: 1878

[30]

Song Z H, Sun J R, Williams G R, Liao X Y, Xiao Z Y, Tang Y X, Zhang W, Chen Y L, Liu Y. Int. J. Biol. Macromol., 2025, 318: 144940

[31]

Lin P C, Wong Y T, Su Y A, Chen W C, Chueh C C. ACS Sustain. Chem. Eng., 2018, 6: 14621

[32]

Xu W J, Newton M A A, Xin B J, Chen Z M. J. Mater. Sci., 2024, 59: 104

[33]

Sun X X, Luo C H, Luo F L. Eur. Polym. J., 2020, 124: 109465

[34]

Wu F, Gao J F, Xiang Y, Yang J M. Polymers, 2023, 15: 3782

[35]

Jiang X C, Jiang T, Zhang X F, Dai H, Zhang X. Polym. Eng. Sci., 2012, 52: 2245

[36]

Kahvand F, Fasihi M. Int. J. Biol. Macromol., 2019, 140: 775

[37]

Xie J Y, Jin X R, Cheng H, Chen W, Yu W C, Wang L L. Ind. Crop. Prod., 2024, 220: 119246

[38]

Rondonuwu F S, Setiawan A, Muninggar J, Karwur F F. IOP Conf. Ser., Mater. Sci. Eng., 2020, 959: 012003

[39]

Lv R L, Cao X, Zhang T Y, Ji W X, Muhammad U, Chen J, Wei Y. Carbohydr. Polym., 2025, 351: 123111

[40]

Ai J Y, Li K, Li J B, Yu F, Ma J. Int. J. Biol. Macromol., 2021, 172: 66

[41]

Xiao Z B, Li Q F, Liu H Q, Zhao Q X, Niu Y W, Zhao D. Eur. Polym. J., 2022, 173: 111277

[42]

He H, Zhang L, Yue S Z, Yu S Z, Wei J, Ouyang J Y. Macromolecules, 2021, 54: 1234

[43]

Lee J, Kim S, Kim J W, Kim J Y, Choi Y, Park M, Kim D S, Lee H, Kim S, Kim Y, Ha J S. Small, 2025, 21: 2409365

[44]

Pei W H, Zhang H, Wang Y J, Guo X H, Xing X, Huang Y. IEEE Trans. Biomed. Eng., 2016, 64: 463

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

PDF

19

Accesses

0

Citation

Detail

Sections
Recommended

/