Zeolites in CO2 Hydrogenation: Multifunctional Roles and Advanced Modifications

Jiaqi Yang , Huanhao Chen , Run Pan , Xiaolei Fan , Xiaoxia Ou , Colin Snape , Jun He

Chemical Research in Chinese Universities ›› : 1 -15.

PDF
Chemical Research in Chinese Universities ›› :1 -15. DOI: 10.1007/s40242-026-5198-x
Review Article
review-article

Zeolites in CO2 Hydrogenation: Multifunctional Roles and Advanced Modifications

Author information +
History +
PDF

Abstract

Zeolites, as one of the most versatile classes of catalysts, exhibit remarkable potential in CO2 chemistry and play a pivotal role in advancing the circular carbon economy. Owing to their unique physicochemical properties, zeolites serve as excellent platforms for catalytic CO2 valorisation, particularly in hydrogenation reactions. They act as multifunctional catalyst supports, enabling the anchoring of metal active sites through diverse strategies, such as nanoparticle encapsulation and single-atom stabilisation, while also providing additional functionalities for tandem catalytic processes. Consequently, metal-zeolite catalyst systems effectively promote the conversion of CO2 into both C1 products (e.g., CO, CH4, and methanol) and high-value multi-carbon products (e.g., oxygenates, olefins, and aromatics). Recent research efforts have therefore focused on enhancing these catalytic systems by tailoring zeolite characteristics, including pore structure and acidity. In this review, we present a comprehensive overview of zeolite-based CO2 hydrogenation, highlighting the multiple roles of zeolites within metal-zeolite catalysts, the modification strategies employed, and the mechanistic insights underlying improved performance. We further discuss structure-performance correlations, assess industrial prospects, and outline future research directions. This work provides a timely overview of state-of-the-art metal-zeolite catalysts for CO2 hydrogenation, serving as a valuable reference for the continued development of CO2 valorisation technologies.

Keywords

Zeolite / CO2 hydrogenation / Multifunctional catalyst / Tandem catalysis / Modification

Cite this article

Download citation ▾
Jiaqi Yang, Huanhao Chen, Run Pan, Xiaolei Fan, Xiaoxia Ou, Colin Snape, Jun He. Zeolites in CO2 Hydrogenation: Multifunctional Roles and Advanced Modifications. Chemical Research in Chinese Universities 1-15 DOI:10.1007/s40242-026-5198-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alothman Z. Materials (Basel)., 2012, 5: 2874

[2]

Dhakshinamoorthy A, Alvaro M, Corma A, Garcia H. Dalt. Trans., 2011, 40: 6344

[3]

Wu S H, Hao C J, Cao Y, Pan W P, Shu C M. Res. J. Chem. Environ., 2011, 15: 406

[4]

Kordala N, Wyszkowski M. Molecules, 2024, 29: 1069

[5]

Chen H R, Zhou X X, Shi J L. J. Inorg. Mater., 2018, 33: 113

[6]

Firouzjaee M H, Taghizadeh M. Mini. Rev. Org. Chem., 2020, 17: 795

[7]

Singh M P, Baghel G S, Titinchi S J J, Abbo H S. Advaned Catalytic Materials, 2015, Beverly, Scrivener

[8]

Mancinelli M, Martucci A. Sustain. Chem., 2025, 6: 9

[9]

Zhang L, Sun N, Wang M, Wu T, Wei W, Pang C H. Int. J. Energy Res., 2021, 45: 19789

[10]

Bique A O, Nguyen T B H, Leonzio G, Galanopoulos C, Zondervan E. Comput. Aided Chem. Eng., 2018, 43: 1413

[11]

Asare Bediako B B, Qian Q, Han B. Acc. Chem. Res., 2021, 54: 2467

[12]

Nahra F, Cazin C S J. Sci. Synth., 2018, 2017: 289

[13]

Gorbunov D N, Nenasheva M V, Terenina M V, Kardasheva Y S, Kardashev S V, Naranov E R, Bugaev A L, Soldatov A V, Maximov AL, Karakhanov E A. Pet. Chem., 2022, 62: 1

[14]

Ehmann K. R., Nisters A., Vorholt A. J., Leitner W., ChemCatChem, 2022, 14.

[15]

Hafeez S, Harkou E, Al-Salem S M, Goula M A, Dimitratos N, Charisiou N D, Villa A, Bansode A, Leeke G, Manos G, Constantinou A. React. Chem. Eng., 2022, 7: 795

[16]

Ronda-Lloret M, Rothenberg G, Shiju N R. ChemSusChem, 2019, 12: 3896

[17]

Tan L, Zhang P, Cui Y, Suzuki Y, Li H, Guo L, Yang G, Tsubaki N. Fuel Process. Technol., 2019, 196: 106174

[18]

Dang S, Gao P, Liu Z, Chen X, Yang C, Wang H, Zhong L, Li S, Sun Y. J. Catal., 2018, 364: 382

[19]

Li Y, He D, Ge S, Zhang R, Zhu Q. Appl. Catal. B: Environ., 2008, 80: 72

[20]

Si Z, Amoo C C, Han Y, Wei J, Yu J, Ge Q, Sun J. J. Energy Chem., 2022, 70: 162

[21]

Ni Y, Chen Z, Fu Y, Liu Y, Zhu W, Liu Z. Nat. Commun., 2018, 9: 3457

[22]

Tian H, He H, Jiao J, Zha F, Guo X, Tang X, Chang Y. Fuel, 2022, 314: 123119

[23]

Wen C, Xu X, Song X, Lu L, Zhuang X, Jin K, Jiang Q, Zhang X, Chen L, Wang C, Ma L. Energy and Fuels, 2023, 37: 518

[24]

Wang X, Zeng C Y, Gong N, Zhang T, Wu Y, Zhang J, Song F, Yang G, Tan Y. ACS Catal., 2021, 11: 1528

[25]

Zhang L, Dang Y, Zhou X, Gao P, Petrus van Bavel A, Wang H, Li S, Shi L, Yang Y, Vovk E I, Gao Y, Sun Y. Innovation, 2021, 2: 100170

[26]

Gao X, Atchimarungsri T, Ma Q, Zhao T S, Tsubaki N. EnergyChem, 2020, 2: 100038

[27]

Li X, Ke J, Li R, Li P, Ma Q, Zhao T S. Chem. Eng. Sci., 2023, 282: 119226

[28]

Álvarez A, Bansode A, Urakawa A, Bavykina A V, Wezendonk T A, Makkee M, Gascon J, Kapteijn F. Chem. Rev., 2017, 117: 9804

[29]

Bonura G, Cannilla C, Frusteri L, Mezzapica A, Frusteri F. Catal. Today, 2017, 281: 337

[30]

Sagar T V, Kumar P, Žener B, Šuligoj A, Kočí K, Štangar U L. Mol. Catal., 2023, 545: 113238

[31]

Xu D, Wang Y, Ding M, Hong X, Liu G, Tsang S C E. Chem, 2021, 7: 849

[32]

Ma Y, Liu J, Chu M, Yue J, Cui Y, Xu G. Catal. Lett., 2022, 152: 872

[33]

Ma L P, Xu W J. Adv. Mater. Res., 2013, 781–784: 227

[34]

He J, Chang S, Du H, Jiang B, Yu W, Wang Z, Chu W, Han L, Zhu J, Li H. J. CO2 Util., 2021, 54: 101751

[35]

Wang W, Wang S, Ma X, Gong J. Chem. Soc. Rev., 2011, 40: 3703

[36]

Yang H, Zhang C, Gao P, Wang H, Li X, Zhong L, Wei W, Sun Y. Catal. Sci. Technol., 2017, 7: 4580

[37]

Sun C, Da Costa P. Heterogeneous Catalysis: Materials and Applications, 2022, Amsterdam, Elsevier59

[38]

Kostyniuk A, Likozar B. Chem. Eng. J., 2025, 503: 158467

[39]

Brix F, Desbuis V, Piccolo L, Gaudry É. J. Phys. Chem. Lett., 2020, 11: 7672

[40]

Len T, Luque R. Green Chem., 2023, 25: 490

[41]

Yang W, Yasuda S, Balu S, Wang Y, Kondo J N, Yang T C K, Yokoi T. Chem. Eng. J., 2023, 471: 144762

[42]

Wang Y, Liu S, Liu F, Yao M, Ma J, Geng S, Cao J, Wang X. Chem. Eng. J., 2024, 500: 157398

[43]

Arora S S, Bhan A. J. Catal., 2020, 383: 24

[44]

Ding H, Li H, Zhang M, Yang X, Wang Y, Zhao J, Wu L, Han L, Feng J. Chem. Eng. J., 2025, 521: 166465

[45]

Shi Y, Gao W, Liu G, Tsubaki N. ChemSusChem, 2025, 18: e202402756

[46]

Venezia A M, La Parola V, Liotta LF. Catal. Today, 2017, 285: 114

[47]

Solymosi F. Catal. Rev., 1968, 1: 233

[48]

Sun Q, Wang N, Yu J. Adv. Mater., 2021, 33: 2104442

[49]

Graça I, González L V, Bacariza M C, Fernandes A, Henriques C, Lopes J M, Ribeiro M F. Appl. Catal. B: Environ., 2014, 147: 101

[50]

Wei L., Grénman H., Haije W., Kumar N., Aho A., Eränen K., Wei L., de Jong W., Appl. Catal. A: Gen., 2021, 612.

[51]

Sholeha N A, Mohamad S, Bahruji H, Prasetyoko D, Widiastuti N, Abdul Fatah N A, Jalil A A, Taufiq-Yap Y H. RSC Adv., 2021, 11: 16376

[52]

Ma S, Li X, Yang Z, Li H. J. Catal., 2023, 417: 368

[53]

Sun Q, Chen B W J, Wang N, He Q, Chang A, Yang C M, Asakura H, Tanaka T, Hülsey M J, Wang C H, Yu J, Yan N. Angew. Chem. Int. Ed., 2020, 59: 20183

[54]

Cui W G, Li Y T, Yu L, Zhang H, Hu T L. ACS Appl. Mater. Interfaces, 2021, 13: 18693

[55]

Li Y, Du T, Chen C, Jia H, Liu J, Zheng Z, Wang Y, Fang X. Microporous Mesoporous Mater., 2024, 366: 112937

[56]

Christensen C H, Johannsen K, Törnqvist E, Schmidt I, Topsøe H, Christensen C H. Catal. Today, 2007, 128: 117

[57]

Etim U J, Chen Y, Zhong Z. Chem. Eng. J., 2024, 498: 155783

[58]

Wang C, Guan E, Wang L, Chu X, Wu Z, Zhang J, Yang Z, Jiang Y, Zhang L, Meng X, Gates B C, Xiao F S. J. Am. Chem. Soc., 2019, 141: 8482

[59]

Shao G, Zhang Y, Zhang Z, Zhang J, Su J, Liu D, He C, Xu J, Han Y. CIESC J., 2017, 68: 670

[60]

Wei J, Ge Q, Yao R, Wen Z, Fang C, Guo L, Xu H, Sun J. Nat. Commun., 2017, 8: 15174

[61]

Gao P, Zhang L, Li S, Zhou Z, Sun Y. ACS Cent. Sci., 2020, 6: 1657

[62]

Chen Y, Xu Y, Cheng D G, Chen Y, Chen F, Lu X, Huang Y, Ni S. J. Chem. Technol. Biotechnol., 2015, 90: 415

[63]

Wang C M, Wang Y D, Xie Z K. Catal. Sci. Technol., 2016, 6: 6644

[64]

Chernyak S A, Corda M, Marinova M, Safonova O V, Kondratenko V A, Kondratenko E V, Kolyagin Y G, Cheng K, Ordomsky V V, Khodakov A Y. ACS Catal., 2023, 13: 14627

[65]

Sun Z, Gao Z, Ma R, Xu Q, Shao B, Liu H, Hu J. Appl. Catal. B: Environ., 2024, 358: 124358

[66]

Zhao Y, Shi P, Wang X, Guo X, Yao R, Li Y, Jia Q, Ban H, Li L, Li C. Chem. Eng. J., 2025, 503: 158350

[67]

Zhang P, Ma L, Meng F, Wang L, Zhang R, Yang G, Li Z. Appl. Catal. B: Environ., 2022, 305: 121042

[68]

Ra E C, Kim K H, Lee J H, Jang S, Kim H E, Lee J H, Kim E H, Kim H, Kwak J H, Lee J S. ACS Catal., 2024, 14: 3492

[69]

Di W, Ho PH, Achour A, Pajalic O, Josefsson L, Olsson L, Creaser D. J. CO2 Util., 2023, 72: 102512

[70]

Wang S, Zhang L, Wang P, Jiao W, Qin Z, Dong M, Wang J, Olsbye U, Fan W. Nat. Catal., 2022, 5: 1038

[71]

Lu S Y, Yang H Y, Yang C G, Gao P, Sun Y H. J. Fuel Chem. Technol., 2021, 49: 1132

[72]

Amoo C C, Orege J I, Ge Q, Sun J. Appl. Catal. B: Environ., 2024, 340: 123193

[73]

Ramirez A, Gong X, Caglayan M, Nastase S A F, Abou-Hamad E, Gevers L, Cavallo L, Dutta Chowdhury A, Gascon J. Nat. Commun., 2021, 12: 5914

[74]

Shi Y, Gao W, Wang G, Fan J, Wang C, Wang F, He Y, Guo X, Yasuda S, Yang G, Tsubaki N. Mater. Today Chem., 2023, 32: 101654

[75]

Cui Z M, Liu Q, Ma Z, Bian S W, Song W G. J. Catal., 2008, 258: 83

[76]

Wang S, Li Z, Qin Z, Dong M, Li J, Fan W, Wang J. Chinese J. Catal., 2021, 42: 1126

[77]

Cui X, Gao P, Li S, Yang C, Liu Z, Wang H, Zhong L, Sun Y. ACS Catal., 2019, 9: 3866

[78]

Li Y, Zeng L, Pang G, Wei X, Wang M, Cheng K, Kang J, Serra J M, Zhang Q, Wang Y. Appl. Catal. B: Environ., 2023, 324: 122299

[79]

Gao P, Li S, Bu X, Dang S, Liu Z, Wang H, Zhong L, Qiu M, Yang C, Cai J, Wei W, Sun Y. Nat. Chem., 2017, 9: 1019

[80]

Li Z, Qu Y, Wang J, Liu H, Li M, Miao S, Li C. Joule, 2019, 3: 570

[81]

García-Hurtado E, Rodríguez-Fernández A, Moliner M, Martínez C. Catal. Sci. Technol., 2020, 10: 5648

[82]

Wang H, Fan S, Guo S, Wang S, Qin Z, Dong M, Zhu H, Fan W, Wang J. Nat. Commun., 2023, 14: 2627

[83]

Yan P, Peng H, Vogrin J, Rabiee H, Zhu Z. J. Mater. Chem. A, 2023, 11: 17938

[84]

Yang S, Song J, Yue Y, Chen B, Ali S, Tan K B, Tian J, Huang J, Li Q, Zhan G. Chem. Eng. Sci., 2026, 320: 122468

[85]

Wang T, Yang C, Gao P, Zhou S, Li S, Wang H, Sun Y. Appl. Catal. B: Environ., 2021, 286: 119929

[86]

Li W, Zhang J, Jiang X, Mu M, Zhang A, Song C, Guo X. Ind. Eng. Chem. Res., 2022, 61: 6322

[87]

Deng L, Zhang J, Yang Y, Wang T, Zhu M, Yang Z, Xu J. J. Colloid Interface Sci., 2025, 700: 138540

[88]

Zhao B, Zhai P, Wang P, Li J, Li T, Peng M, Zhao M, Hu G, Yang Y, Li Y W, Zhang Q, Fan W, Ma D. Chem, 2017, 3: 323

[89]

Wei J, Yao R, Ge Q, Xu D, Fang C, Zhang J, Xu H, Sun J. Appl. Catal. B: Environ., 2021, 283: 119648

[90]

Murciano R, Serra J M, Martínez A. Catal. Today, 2024, 427: 114404

[91]

Wang Y, Gao W, Wang K, Gao X, Zhang B, Zhao H, Ma Q, Zhang P, Yang G, Wu M, Tsubaki N. Chem. Sci., 2021, 12: 7786

[92]

Wang Y, Kazumi S, Gao W, Gao X, Li H, Guo X, Yoneyama Y, Yang G, Tsubaki N. Appl. Catal. B: Environ., 2020, 269: 118792

[93]

Shang X, Liu G, Su X, Huang Y, Zhang T. ACS Catal., 2022, 12: 13741

[94]

Liu X, Wang M, Yin H, Hu J, Cheng K, Kang J, Zhang Q, Wang Y. ACS Catal., 2020, 10: 8303

[95]

Bonura G, Cannilla C, Frusteri L, Catizzone E, Todaro S, Migliori M, Giordano G, Frusteri F. Catal. Today, 2020, 345: 175

[96]

Fan X, Jiao Y. Sustainable Nanoscale Engineering: from Materials Design to Chemical Processing, 2020, Amsterdam, Elsevier

[97]

Chen L H, Sun M H, Wang Z, Yang W, Xie Z, Su B L. Chem. Rev., 2020, 120: 11194

[98]

Abdulridha S, Jiang J, Xu S, Zhou Z, Liang H, Mao B, Zhou Y, Garforth A A, Jiao Y, Fan X. Green Chem., 2020, 22: 5115

[99]

Song G, Li M, Yan P, Nawaz M A, Liu D. ACS Catal., 2020, 10: 11268

[100]

Li W, Wang K, Zhan G, Huang J, Li Q. ACS Sustain. Chem. Eng., 2020, 8: 14058

[101]

Jiao Y, Forster L, Xu S, Chen H, Han J, Liu X, Zhou Y, Liu J, Zhang J, Yu J, D’Agostino C, Fan X. Angew. Chem. Int. Ed., 2020, 59: 19478

[102]

Hu H, Qu Y, Feng Z, Chen S, Xu T, Wang H, Wang J, Li C. Appl. Catal. A Gen., 2023, 666: 119410

[103]

van Bokhoven J A, Lamberti C. Coord. Chem. Rev., 2014, 277: 275

[104]

Zhang C, Hu K, Chen X, Xu L, Deng C, Wang Q, Gao R, Jun K W, Kim S K, Zhao T, Wan H, Guan G. Fuel Process. Technol., 2023, 248: 107824

[105]

Tada S, Li D, Okazaki M, Kinoshita H, Nishijima M, Yamauchi N, Kobayashi Y, Iyoki K. Catal. Today, 2023, 411/412: 113828

[106]

Xu B, Bordiga S, Prins R, van Bokhoven J A. Appl. Catal. A: Gen., 2007, 333: 245

[107]

Batool S R, Sushkevich V L, van Bokhoven J A. ACS Catal., 2024, 14: 678

[108]

Zhao L, Wang Y, Xiao P, Toyoda H, Li Q, Sun Y, Samya B, Gies H, Yokoi T. Microporous Mesoporous Mater., 2025, 384: 113456

[109]

Zhang H, Samsudin I B, Jaenicke S, Chuah G K. Catal. Sci. Technol., 2022, 12: 6024

[110]

Gu Y, Liang J, Wang Y, Huo K, Li M, Wang W, He R, Yasuda S, Gao X, Yang G, Wu M, Tsubaki N. Appl. Catal. B: Environ., 2024, 349: 123842

[111]

Shah D R, Nezam I, Zhou W, Proaño L, Jones C W. Energy and Fuels, 2023, 38: 2224

[112]

Liu J, Yang C, Li S, Zhang J, Bu X, Wang H, Ji T, Li J, Chang C R, Shi Y, Liu J, Xu Z, Gao P. Appl. Catal. B: Environ., 2025, 377: 125523

[113]

Dai C, Zhao X, Hu B, Zhang J, Hao Q, Chen H, Guo X, Ma X. Ind. Eng. Chem. Res., 2020, 59: 19194

[114]

Cordero-Lanzac T, Capel Berdiell I, Airi A, Chung S H, Mancuso J L, Redekop E A, Fabris C, Figueroa-Quintero L, Navarro de Miguel J C, Narciso J, Ramos-Fernandez E V, Svelle S, Van Speybroeck V, Ruiz-Martínez J, Bordiga S, Olsbye U. JACS Au, 2024, 4: 744

[115]

Lee B J, Lee J H, Kim D H, Hur Y G, Lee K Y. Microporous Mesoporous Mater., 2021, 323: 111243

[116]

Yaripour F, Shariatinia Z, Sahebdelfar S, Irandoukht A. Microporous Mesoporous Mater., 2015, 203: 41

[117]

Zhan J, Zhang C, Zhang Y, Jia M. Molecules, 2025, 30: 3670

[118]

Fujiwara M, Satake T, Shiokawa K, Sakurai H. Appl. Catal. B: Environ., 2015, 179: 37

[119]

Tian H, Chen Z, Huang H, Zha F, Chang Y, Chen H. J. Energy Chem., 2024, 99: 725

[120]

Song G, Jiang Q, Zhai Y, Liu D. Chem. Eng. Sci., 2023, 280: 119037

[121]

Gao W, Guo L, Wu Q, Wang C, Guo X, He Y, Zhang P, Yang G, Liu G, Wu J, Tsubaki N. Appl. Catal. B: Environ., 2022, 303: 120906

[122]

Liu Y, Fu T, Guo Y, Guo Y, Wang R, Cao R, Li Z. J. Environ. Chem. Eng., 2025, 13: 116704

[123]

De Vos Y, Koekkoek A J J, Bonura G, Todaro S, Kus M, Vansant A, Gerritsen G, Cannilla C, Abbenhuis H C L, Middelkoop V. Mater. Sci. Eng. B, 2024, 310: 117759

[124]

D’Agostino C, Bräuer P, Zheng J, Robinson N, York A P E, Song L, Fan X. Mater. Today Chem., 2023, 29: 101443

[125]

Ojelade O A. Chempluschem, 2023, 88: e202300301

[126]

Yang Q, Fan Y, Rong D, Bao R, Zhang D. AIChE J., 2024, 70: e18437

[127]

https://www.cas.cn/sygz/202203/t20220304_4827046.shtml, accessed on 2025-08-07

[128]

Chen J J. China Petro Chemical Industry Observer, 2022, 3: 16

[129]

Ding X, Duan J, Jia M, Fan H, Lyu Y, Fu J, Liu X. Chem.-An Asian J., 2025, 20: e202401703

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

PDF

26

Accesses

0

Citation

Detail

Sections
Recommended

/