Zeolite, a New Intrinsic Pickering Emulsifier

Weiling Chen , Li Xu , Zhiming Fu , Fei Ma , Jiuxing Jiang

Chemical Research in Chinese Universities ›› : 1 -10.

PDF
Chemical Research in Chinese Universities ›› :1 -10. DOI: 10.1007/s40242-026-5186-1
Review Article
review-article

Zeolite, a New Intrinsic Pickering Emulsifier

Author information +
History +
PDF

Abstract

This mini review charts the transformation of zeolite from classical heterogeneous catalysts into versatile, grafting-free Pickering interfacial catalysts (PICs). We first introduced the basic stabilization energy theory, which provides us with important guidelines for material design. Generally, zeolites with anisotropic morphology, i.e., layer or fibrous, tend to give higher stabilization energy, thus show more potential of intrinsic amphiphilicity. Particular attention is paid to morphology engineering: ultrathin MWW nanosheets and high-aspect-ratio TON nanofibres with the tuned acidity and zeta potential bestow their ability to stabilize the emulsion. Subsequent deposition of Pd or Pt nanoparticles converts the emulsifier into a Pickering interfacial catalyst that simultaneously stabilizes droplets and catalyzes reactions, such as hydrogenations and Suzuki-Miyaura coupling. Overall, the convergence of crystalline porosity, tunable surface chemistry and catalytic functionality positions zeolite-based PICs as a sustainable cornerstone for next-generation chemical manufacturing.

Keywords

Zeolite / Pickering emulsion / Intrinsic amphiphilicity

Cite this article

Download citation ▾
Weiling Chen, Li Xu, Zhiming Fu, Fei Ma, Jiuxing Jiang. Zeolite, a New Intrinsic Pickering Emulsifier. Chemical Research in Chinese Universities 1-10 DOI:10.1007/s40242-026-5186-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ramsden W. Proc. Royal Soc. London, 1904, 72: 156

[2]

Pickering S U. J. Chem. Soc., Trans., 1907, 91: 2001

[3]

Binks B P, Horozov T S. Colloidal Particles at Liquid Interfaces, 2006, New York, Cambridge University Press

[4]

Israelachvili J N. Intermolecular and Surface Forces, 2011Third EditionBoston, Academic Press

[5]

Barrer R. M., J. Chem. Soc. (Resumed), 1948, 127.

[6]

Finkle P, Draper H D, Hildebrand J H. J. Am. Chem. Soc., 1923, 45: 2780

[7]

Pieranski P. Phys. Rev. Lett., 1980, 45: 569

[8]

Ni L, Yu C, Wei Q, Liu D, Qiu J. Angew. Chem. Int. Ed., 2022, 61: e202115885

[9]

Binks B P, Clint J H. Langmuir, 2002, 18: 1270

[10]

Binks B P. Curr. Opin. Colloid Interface Sci., 2002, 7: 21

[11]

Binks B P, Lumsdon S O. Langmuir, 2000, 16: 8622

[12]

Binks B P, Lumsdon S O. Langmuir, 2001, 17: 4540

[13]

Cavallaro G, Milioto S, Nigamatzyanova L, Akhatova F, Fakhrullin R, Lazzara G. ACS Appl. Nano Mater., 2019, 2: 3169

[14]

Machado J P E, de Freitas R A, Wypych F. Appl. Clay Sci., 2019, 169: 10

[15]

Zhang N, Zhang L, Sun D. Langmuir, 2015, 31: 4619

[16]

Hunter S J, Thompson K L, Lovett J R, Hatton F L, Derry M J, Lindsay C, Taylor P, Armes S P. Langmuir, 2019, 35: 254

[17]

Zhang Q, Wang C, Fu M, Wang J, Zhu S. Polym. Chem., 2017, 8: 5474

[18]

Tanaka T, Okayama M, Minami H, Okubo M. Langmuir, 2010, 26: 11732

[19]

He J, Zhang Q, Gupta S, Emrick T, Russell T P, Thiyagarajan P. Small, 2007, 3: 1214

[20]

Tang C, Spinney S, Shi Z, Tang J, Peng B, Luo J, Tam K C. Langmuir, 2018, 34: 12897

[21]

Shen X, Svensson Bonde J, Kamra T, Bulow L, Leo J C, Linke D, Ye L. Angew. Chem. Int. Ed., 2014, 53: 10687

[22]

Anjali T G, Basavaraj M G. Langmuir, 2019, 35: 3

[23]

He J, Niu Z, Tangirala R, Wang J Y, Wei X, Kaur G, Wang Q, Jutz G, Boker A, Lee B, Pingali S V, Thiyagarajan P, Emrick T, Russell T P. Langmuir, 2009, 25: 4979

[24]

Dong L, Johnson D T. Langmuir, 2005, 21: 3838

[25]

Rodríguez-reinoso F. Carbon, 1998, 36: 159

[26]

Ikem V O, Menner A, Bismarck A. Angew. Chem. Int. Ed., 2008, 47: 8277

[27]

Li Z, Ming T, Wang J, Ngai T. Angew. Chem. Int. Ed., 2009, 48: 8490

[28]

Bago Rodriguez A M, Binks B P. Curr. Opin. Colloid Interface Sci., 2022, 57: 10155

[29]

He X, Lu Q. Adv. Colloid Interface Sci., 2024, 324: 103086

[30]

Salager J-L. Sjöblom J. Emulsion Phase Inversion Phenomena, 2005, Boca Raton, CRC Press

[31]

Perazzo A, Preziosi V, Guido S. Adv. Colloid Interface Sci., 2015, 222: 581

[32]

Bouchama F, van Aken G A, Autin A J E, Koper G J M. Colloids Surf. A, 2003, 231: 11

[33]

Binks B P, Lumsdon S O. Langmuir, 2000, 16: 3748

[34]

Sun G, Guo T, Luo J, Liu R, Ngai T, Binks B P. Langmuir, 2023, 39: 1386

[35]

Pera-Titus M, Leclercq L, Clacens J M, De Campo F, Nardello-Rataj V. Angew. Chem. Int. Ed., 2015, 54: 2006

[36]

Crossley S, Faria J, Shen M, Resasco D E. Science, 2010, 327: 68

[37]

Rodriguez A M B, Binks B P. Soft Matter, 2020, 16: 10221

[38]

Zapata P A, Faria J, Ruiz M P, Jentoft R E, Resasco D E. J. Am. Chem. Soc., 2012, 134: 8570

[39]

Jing W, Wang Y, Shi Z, Peng B, Luo J, Wang R, Qiu S, Zhang Z. ACS Appl. Mater. Interfaces, 2020, 12: 40684

[40]

Jing W, Li H, Xiao P, Liu B, Luo J, Wang R, Qiu S, Zhang Z. Nanoscale, 2021, 13: 9229

[41]

Yang Y, Zhou W-J, Liebens A, Clacens J-M, Pera-Titus M, Wu P. J. Phys Chem. C, 2015, 119: 25377

[42]

Chen G, Han J, Niu Z, She P, Li L, Guan B, Yu J. J. Am. Chem. Soc., 2023, 145: 9021

[43]

Zeng Z, Ma F, Wang S, Wen J, Jiang X, Li G, Tong Y, Liu X, Jiang J. J. Am. Chem. Soc., 2024, 146: 9851

[44]

Wang S., Huan X., Ma F., Zeng Z., Zhang Y., Yao Y., Jiang J., Chem. Sci., 2025, DOI: https://doi.org/10.1039/D5SC04922A.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

/