PDF
Abstract
Chiral covalent organic frameworks (CCOFs) integrate programmable chiral backbones, ordered π-conjugated networks, and defined pores, combining chiral optical selectivity with efficient charge transport. These features enable direct electrical readout of circularly polarized light (CPL) without external optics. This review summarizes recent advances in CCOF-based CPL detection, covering unified performance metrics including the asymmetry factor g, responsivity R, specific detectivity D* and bandwidth f−3Db and three major synthetic strategies: postsynthetic modification (PSM), direct chiral synthesis (DCS), and chiral induction synthesis (CIS). We discuss the representative device architectures and emerging applications. Finally, we outline future directions for scalable low-energy synthesis, oriented film fabrication, and array-level integration. Multiscale cooperation among chemistry, photonics, and device physics is essential to transition CCOF-based CPL detection from proof-of-concept toward practical implementation.
Keywords
Chiral covalent organic framework
/
Circularly polarized light detection
/
Asymmetry factor
/
Chiral photonics
/
Chiral-induced spin selectivity
/
Photodetector
Cite this article
Download citation ▾
Junhao Yu, Rongjiao Zhu, Rongjin Li.
Chiral Covalent Organic Frameworks for Circularly Polarized-light Detection: A Review.
Chemical Research in Chinese Universities, 2025, 41(6): 1586-1606 DOI:10.1007/s40242-025-5243-1
| [1] |
Bliokh K Y, Rodríguez-Fortuño F J, Nori F, Zayats A V. Nat. Photonics, 2015, 9: 796
|
| [2] |
Kavokin A, Liew T C H, Schneider C, Lagoudakis P G, Klembt S, Hoefling S. Nat. Rev. Phys., 2022, 4: 435.
|
| [3] |
Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, Zoller P. Nature, 2017, 541: 473
|
| [4] |
Sherson J F, Krauter H, Olsson R K, Julsgaard B, Hammerer K, Cirac I, Polzik E S. Nature, 2006, 443: 557
|
| [5] |
Chappert C, Fert A, Van Dau F N. Nat. Mater., 2007, 6: 813
|
| [6] |
Li W, Coppens Z J, Besteiro L V, Wang W, Govorov A O, Valentine J. Nat. Commun., 2015, 6: 8379
|
| [7] |
Li L, Wang J, Kang L, Liu W, Yu L, Zheng B, Brongersma M L, Werner D H, Lan S, Shi Y, Xu Y, Wang X. ACS Nano, 2020, 14: 16634
|
| [8] |
Song I, Ahn J, Ahn H, Lee S H, Mei J, Kotov N A, Oh J H. Nature, 2023, 617: 92
|
| [9] |
Liu L, Yang Y, Wang Y, Adil M A, Zhao Y, Zhang J, Chen K, Deng D, Zhang H, Amin K, Wu Y, Zhang Y, Wei Z. ACS Mater. Lett., 2022, 4: 401
|
| [10] |
Yang Y, da Costa R C, Fuchter M J, Campbell A J. Nat. Photonics, 2013, 7: 634
|
| [11] |
Lee Y H, Won Y, Mun J, Lee S, Kim Y, Yeom B, Dou L, Rho J, Oh J H. Nat. Commun., 2023, 14: 7298
|
| [12] |
Namgung S D, Kim R M, Lim Y-C, Lee J W, Cho N H, Kim H, Huh J-S, Rhee H, Nah S, Song M-K, Kwon J-Y, Nam K T. Nat. Commun., 2022, 13: 5081
|
| [13] |
Chen C, Gao L, Gao W, Ge C, Du X, Li Z, Yang Y, Niu G, Tang J. Nat. Commun., 2019, 10: 1927
|
| [14] |
Ishii A, Miyasaka T. Sci. Adv., 2020, 6: eabd3274
|
| [15] |
Bai J, Wang H, Ma J, Zhao Y, Lu H, Zhang Y, Gull S, Qiao T, Qin W, Chen Y, Jiang L, Long G, Wu Y. J. Am. Chem. Soc., 2024, 146: 18771
|
| [16] |
Li Y, Ding Y, Sun J, Tan S, Li Y, Wang X, Cai J, Bai J, Lv X, Guo W, Hao Y, Liu Y, Lin Z, Chang J. SmartMat, 2025, 6: e70022
|
| [17] |
Grey P, Fernandes S N, Gaspar D, Fortunato E, Martins R, Godinho M H, Pereira L. Adv. Funct. Mater., 2019, 29: 1805279.
|
| [18] |
Wen W, Liu G, Wei X, Huang H, Wang C, Zhu D, Sun J, Yan H, Huang X, Shi W, Dai X, Dong J, Jiang L, Guo Y, Wang H, Liu Y. Nat. Commun., 2024, 15: 2397
|
| [19] |
Wang L, Xue Y, Cui M, Huang Y, Xu H, Qin C, Yang J, Dai H, Yuan M. Angew. Chem. Int. Ed., 2020, 59: 6442
|
| [20] |
Mustaqeem M, Kamal S, Ahmad N, Chou P T, Lin K H, Huang Y C, Guo G Y, Paul Inbaraj C R, Li W K, Yao H C, Lu K L, Chen Y F. Materials Today Nano, 2023, 21: 100303
|
| [21] |
Xu H, Chen X, Gao J, Lin J, Addicoat M, Irle S, Jiang D. Chem. Commun., 2014, 50: 1292
|
| [22] |
Han X, Yuan C, Hou B, Liu L, Li H, Liu Y, Cui Y. Chem. Soc. Rev., 2020, 49: 6248
|
| [23] |
Kang X, Stephens E R, Spector-Watts B M, Li Z, Liu Y, Liu L, Cui Y. Chemical Science, 2022, 13: 9811
|
| [24] |
Mao C, Zhou S, Kuang Y, Chen J, Zheng J, Ouyang G. Coordination Chemistry Reviews, 2025, 542: 216844
|
| [25] |
Liu Q, Li Z, Sun J, Lan Y, Hu J, Xiao Y, Yang F-Q, Gao D. Journal of Separation Science, 2025, 48: e70101
|
| [26] |
Hou B, Li Z, Kang X, Jiang H, Cui Y. Chem. Res. Chinese Universities, 2022, 38: 350
|
| [27] |
Liu P, Dai W, Shen X, Shen X, Zhao Y, Liu J-J. Molecules, 2024, 29: 5006
|
| [28] |
Zuo M, Zha X, Jiang Z, Luo M, Yan Z, You H, Qing X, Xiong Y, Liu Y, Liu L, Li Y, Wang W, Li M, Wang D. Angew. Chem. Int. Ed., 2025, 64: e202509454
|
| [29] |
Tang X, Zha J, Wu X, Tong J, Gu Q, Zhang K, Zhang Y, Zheng S, Fan J, Zhang W, Zhang Q, Tan C, Cai S. Angew. Chem. Int. Ed., 2024, 64: e202413675.
|
| [30] |
Gu Q, Zha J, Chen C, Wang X, Yao W, Liu J, Kang F, Yang J, Li Y Y, Lei D, Tang Z, Han Y, Tan C, Zhang Q. Advanced Materials, 2024, 36: 2306414
|
| [31] |
Jing S-M, Gu Z-G, Zhang J. J. Am. Chem. Soc., 2025, 147: 8948
|
| [32] |
Tang X, Zhang K, Xue R, Zheng Y, Chen S, Zheng S, Fan J, Zhang Y, Ye W, Zhang W, Cai S, Liu Y. Angew. Chem. Int. Ed., 2024, 63: e202413675
|
| [33] |
Tang X, Liao X, Cai X, Wu J, Wu X, Zhang Q, Yan Y, Zheng S, Jiang H, Fan J, Cai S, Zhang W, Liu Y. Angew. Chem. Int. Ed., 2022, 62: e202216310.
|
| [34] |
Du C, Zhu X, Yang C, Liu M. Angew. Chem. Int. Ed., 2021, 61: e202113979.
|
| [35] |
Chen H, Gu Z-G, Zhang J. J. Am. Chem. Soc., 2022, 144: 7245
|
| [36] |
Chen C, Yang Z, Hang T, Hao Y, Chen Y, Zhang C, Yang J, Liu X, Li X, Cao G. Light Sci. Appl., 2025, 14: 265
|
| [37] |
Yang S, Zhang S, Hu F, Han J, Li F. Coordination Chemistry Reviews, 2023, 485: 215116
|
| [38] |
Marouf H., Abdel-Salam N., El-Rabaie E.-S. M., Rashed A. N. Z., ElKhamisy K. M., Journal of Optics, 2025, DOI: https://doi.org/10.1007/s12596-025-02779-4.
|
| [39] |
Lian X, Luo L, Dong M, Miao Z, Qi X, Cai Z, Wang L. Journal of Materials Science, 2024, 59: 21581
|
| [40] |
Tang H, Luo K, Chen W. Nature Electronics, 2025, 8: 874.
|
| [41] |
Shi L, Zhu Y, Li G, Ji T, Wang W, Zhang Y, Wu Y, Hao Y, Wang K, Yuan J, Zou Y, Ong B S, Zhu F, Cui Y. Science Bulletin, 2023, 68: 928
|
| [42] |
Nodari D, Qiao Z, Furlan F, Sandberg O J, Vandewal K, Gasparini N. Nature Reviews Materials, 2025, 10: 842
|
| [43] |
Zhu Y, Chen H, Han R, Qin H, Yao Z, Liu H, Ma Y, Wan X, Li G, Chen Y. National Science Review, 2023, 11: nwad311
|
| [44] |
Goushcha A, Tabbert B. Optical Engineering, 2017, 56: 097101.
|
| [45] |
Chandran H T, Mahadevan S, Ma R, Tang Y, Zhu T, Zhu F, Tsang S-W, Li G. Applied Physics Letters, 2024, 124: 101113
|
| [46] |
García de Arquer F P, Armin A, Meredith P, Sargent E H. Nat. Rev. Mater., 2017, 2: 16100.
|
| [47] |
Baeg K J, Binda M, Natali D, Caironi M, Noh Y Y. Adv. Mater, 2013, 25: 4267
|
| [48] |
Wang C, Zhang X, Hu W. Chem. Soc. Rev., 2020, 49: 653
|
| [49] |
Zhang C, Wang X, Qiu L. Front Chem, 2021, 9: 711488
|
| [50] |
Zha J, Huang H, Zhang Q, Tan C. Smart Materials and Devices, 2025, 1: 202501
|
| [51] |
Miao J, Zhang F, Du M, Wang W, Fang Y. Adv. Opt. Mater., 2018, 6: 1800001.
|
| [52] |
Ren H, Chen J D, Li Y Q, Tang J X. Adv Sci., 2020, 8: 2002418.
|
| [53] |
Du L, Luo X, Zhao F, Lv W, Zhang J, Peng Y, Tang Y, Wang Y. Carbon, 2016, 96: 685
|
| [54] |
Li Q, Guo Y, Liu Y. Chemistry of Materials, 2019, 31: 6359
|
| [55] |
Mao J, Jin T, Hou X, Teo S L, Lin M, Chen J, Chen W. SmartMat, 2024, 5: e1283
|
| [56] |
Zhang M, Wu X, Wang Z, Sun L, Ren Y, Liu Y, Li R, Ding R, Wei Y, Yang F, Feng J, Hu W. Adv. Funct. Mater., 2025, 35: 2423932
|
| [57] |
Michaeli K, Varade V, Naaman R, Waldeck D H. Journal of Physics: Condensed Matter, 2017, 29: 103002
|
| [58] |
Naaman R, Paltiel Y, Waldeck D H. Nat. Rew. Chem., 2019, 3: 250
|
| [59] |
Naaman R, Waldeck D H. The Journal of Physical Chemistry Letters, 2012, 3: 2178
|
| [60] |
Bloom B P, Paltiel Y, Naaman R, Waldeck D H. Chemical Reviews, 2024, 124: 1950
|
| [61] |
Côté A P, Benin A I, Ockwig N W, O’Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310: 1166
|
| [62] |
Xu H-S, Ding S-Y, An W-K, Wu H, Wang W. J. Am. Chem. Soc., 2016, 138: 11489
|
| [63] |
Xu H, Gao J, Jiang D. Nature Chemistry, 2015, 7: 905
|
| [64] |
Yuan C, Wu X, Gao R, Han X, Liu Y, Long Y, Cui Y. J. Am. Chem. Soc., 2019, 141: 20187
|
| [65] |
Zhou Y, Wei Y, Ren J, Qu X. Materials Horizons, 2020, 7: 3291
|
| [66] |
Zhang Y, Guo J, VanNatta P, Jiang Y, Phipps J, Roknuzzaman R, Rabaâ H, Tan K, AlShahrani T, Ma S. J. Am. Chem. Soc., 2024, 146: 979
|
| [67] |
Zhang S, Zheng Y, An H, Aguila B, Yang C X, Dong Y, Xie W, Cheng P, Zhang Z, Chen Y, Ma S. Angew. Chem. Int. Ed., 2018, 57: 16754
|
| [68] |
Sun Q, Fu C-W, Aguila B, Perman J, Wang S, Huang H-Y, Xiao F-S, Ma S. J. Am. Chem. Soc., 2018, 140: 984
|
| [69] |
Chen M, Zhang J, Liu C, Li H, Yang H, Feng Y, Zhang B. Org. Lett., 2021, 23: 1748
|
| [70] |
Zhuo S, Wang X, Li L, Yang S, Ji Y. ACS Appl. Mater. Interfaces, 2021, 13: 31059
|
| [71] |
Luo H, Bai X, Liu H, Qiu X, Chen J, Ji Y. Sep. Purif. Technol., 2022, 285: 120336
|
| [72] |
Gu Q, Zha J, Chen C, Wang X, Yao W, Liu J, Kang F, Yang J, Li Y Y, Lei D, Tang Z, Han Y, Tan C, Zhang Q. Adv. Mater, 2023, 36: 2306414.
|
| [73] |
Zhang S, Wang X, Kang F, Gu Q, Sun G, Peng Y K, Zhang Q. SmartMat, 2024, 5: e1265
|
| [74] |
Qian H-L, Yang C-X, Yan X-P. Nat. Commun., 2016, 7: 12104
|
| [75] |
Wang X, Han X, Zhang J, Wu X, Liu Y, Cui Y. J. Am. Chem. Soc., 2016, 138: 12332
|
| [76] |
Han X, Xia Q, Huang J, Liu Y, Tan C, Cui Y. J. Am. Chem. Soc., 2017, 139: 8693
|
| [77] |
Zhang J, Han X, Wu X, Liu Y, Cui Y. J. Am. Chem. Soc., 2017, 139: 8277
|
| [78] |
Han X, Huang J, Yuan C, Liu Y, Cui Y. J. Am. Chem. Soc., 2018, 140: 892
|
| [79] |
Ma H-C, Zhao C-C, Chen G-J, Dong Y-B. Nat. Commun., 2019, 10: 3368
|
| [80] |
Wang L K, Zhou J J, Lan Y B, Ding S Y, Yu W, Wang W. Angew. Chem. Int. Ed., 2019, 58: 9443
|
| [81] |
Yuan C, Fu S, Yang K, Hou B, Liu Y, Jiang J, Cui Y. J. Am. Chem. Soc., 2020, 143: 369
|
| [82] |
Wang Y, Zhuo S, Hou J, Li W, Ji Y. ACS App. Mater. Interfaces, 2019, 11: 48363
|
| [83] |
Hou B, Yang S, Yang K, Han X, Tang X, Liu Y, Jiang J, Cui Y. Angew. Chem. Int. Ed., 2021, 60: 6086
|
| [84] |
Tang X, Liao X, Cai X, Wu J, Wu X, Zhang Q, Yan Y, Zheng S, Jiang H, Fan J, Cai S, Zhang W, Liu Y. Angew. Chem. Int. Ed., 2022, 62: e202216310.
|
| [85] |
Yan Q, Tao S, Liu R, Zhi Y, Jiang D. Angew. Chem. Int. Ed., 2023, 63: e202316092.
|
| [86] |
Hou B, Han X, Xie H, Yuan C, Guo Y, Chen X, Tang X, Su S, Jiang H, Ye Z-M, Kirlikovali K O, Liu Y, Farha O K, Cui Y. J. Am. Chem. Soc., 2025, 147: 12127
|
| [87] |
Han X, Zhang J, Huang J, Wu X, Yuan D, Liu Y, Cui Y. Nat. Commun., 2018, 9: 1294
|
| [88] |
Wang J-C, Kan X, Shang J-Y, Qiao H, Dong Y-B. J. Am. Chem. Soc., 2020, 142: 16915
|
| [89] |
Kan X, Wang J-C, Chen Z, Du J-Q, Kan J-L, Li W-Y, Dong Y-B. J. Am. Chem. Soc., 2022, 144: 6681
|
| [90] |
Li F, Kan J L, Yao B J, Dong Y B. Angew. Chem. Int. Ed., 2022, 61: e202115044
|
| [91] |
Zhao Y, Liu H, Sun B. Sensors and Actuators B: Chemical, 2022, 354: 131253
|
| [92] |
Liu C, Guo P, Ran X-Y, Zhu Y-L, Wang B-J, Zhang J-H, Xie S-M, Yuan L-M. Microchimica Acta, 2024, 191: 281
|
| [93] |
Chen Z, Liu Z-R, Zhang J, Yang W-T, Kan J-L, Fan J, Li W-Y, Wang J-C, Dong Y-B. J. Am. Chem. Soc., 2025, 147: 11647
|
| [94] |
Wang F, Lu Y, He K, Marriott P J, Hill M R, Wang H. Adv. Membr., 2025, 5: 1000113
|
| [95] |
Zuo M, Zha X, Jiang Z, Luo M, Yan Z, You H, Qing X, Xiong Y, Liu Y, Liu L, Li Y, Wang W, Li M, Wang D. Angew. Chem. Int. Ed., 2025, 64: e202509454
|
| [96] |
Valentini C, Montes-García V, Pakulski D, Samorì P, Ciesielski A. Small, 2024, 21: 10544
|
| [97] |
Wang Q, Bao J, Zhang Y, Wang Y, Qiu D, Yang J, Zhang J, Gao H, Wu Y, Dong H, Yang H, Wei Z. Adv. Mater, 2024, 36: 2312396
|
| [98] |
Liu S, Yu F, Liu X, Zhang H, Ma M, Zhang S, Guo H, Hu H, Yuan C, Zheng Z, Wu Y, Zhu W-H. Newton, 2025, 1: 100003.
|
| [99] |
Zhang F, Li Q, Wang C, Wang D, Song M, Li Z, Xue X, Zhang G, Qing G. Adv. Funct. Mater., 2022, 32: 2204487
|
| [100] |
Han H, Lee Y J, Kyhm J, Jeong J S, Han J H, Yang M K, Lee K M, Choi Y, Yoon T H, Ju H, Ahn S K, Lim J A. Adv. Funct. Mater., 2020, 30: 2006236
|
| [101] |
Zhu D, Jiang W, Ma Z, Feng J, Zhan X, Lu C, Liu J, Liu J, Hu Y, Wang D, Zhao Y S, Wang J, Wang Z, Jiang L. Nat. Commun., 2022, 13: 3454
|
| [102] |
Li G, Liu Y, Chen Y, Xia Y, Qi X, Wan X, Jin Y, Liu J, He Q, Li K, Tang J. SmartMat, 2023, 5: e1173.
|
| [103] |
Yang H, Fang H, Wang C, Wang Y, Qi C, Zhang Y, Zhou Q, Huang M, Wang M, Wu M. SmartMat, 2023, 5: e1244.
|
| [104] |
Lin X, Chi J, Lian Z, Yun Y, Yang X, He X, Liu Z, Wang S, Zhao W, Gong Z, Liu Y, Zhang S, Zhai D, Xie S, Sun Y, Su M, Dong Z, Yu S, Song Y. SmartMat, 2023, 5: e1252.
|
| [105] |
Song J, Zeng N, Ma H, Tuchin V V. IEEE J. Sel. Top. Quantum Electron., 2023, 29: 1
|
| [106] |
Si L, Huang T, Wang X, Yao Y, Dong Y, Liao R, Ma H. Optics Express, 2022, 30: 8676
|
| [107] |
Stachelek P, MacKenzie L, Parker D, Pal R. Nat. Commun., 2022, 13: 553
|
RIGHTS & PERMISSIONS
Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH