Electrocatalytic Nitrate Reduction Promoted by Atomically Precise Metal Nanoclusters

Min Zhang , Fan Yang , Moshuqi Zhu , Qiaofeng Yao

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (6) : 1485 -1503.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (6) :1485 -1503. DOI: 10.1007/s40242-025-5232-4
Review
review-article

Electrocatalytic Nitrate Reduction Promoted by Atomically Precise Metal Nanoclusters

Author information +
History +
PDF

Abstract

The massive discharge of nitrate (NO3) represents a major challenge to the sustainability of both human society and ecosystems. Electrochemical reduction of NO3 to NH3 offers a “turning waste into treasure” solution, enabling the conversion of renewable electricity into chemical energy stored in NH3. In recent years, atomically precise metal nanoclusters (NCs) have attracted extensive research interest. Their protein-like hierarchical structures, from the metal core to the protecting layers, allow for multi-level design and synthesis, which not only offers a good means to tailor cluster structure at the atomic level for effective NO3 reduction, but also affords a paradigm for correlating cluster structure and catalytic performance. In this review, we summarize recent advances in atomically precise synthesis and electrocatalytic applications of metal NCs in NO3 reduction reactions. We first outline plausible mechanisms for the electrocatalytic NO3 reduction reactions, and then discuss the application of NCs in NO3 reduction based on their hierarchical architecture. We decipher design and synthesis strategies for metal NCs from four perspectives: metal core size, heteroatom doping, ligand engineering, and support engineering. Regarding the electrocatalytic applications of metal NCs, we aim to reveal the fundamentals governing the catalytic activity and selectivity for conversion of NO3 to NH3. The fundamental and methodological advances systemized in this review should add to the acceptance of metal NCs in the electrocatalytic reduction of NO3.

Keywords

Metal nanocluster / Electrocatalytic nitrate reduction / Model catalysis / Structure-performance relationship

Cite this article

Download citation ▾
Min Zhang, Fan Yang, Moshuqi Zhu, Qiaofeng Yao. Electrocatalytic Nitrate Reduction Promoted by Atomically Precise Metal Nanoclusters. Chemical Research in Chinese Universities, 2025, 41(6): 1485-1503 DOI:10.1007/s40242-025-5232-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Canfield D E, Glazer A N, Falkowski P G. Science, 2010, 330: 192

[2]

Gruber N, Galloway J N. Nature, 2008, 451: 293

[3]

Zhang X, Zhang Y, Shi P, Bi Z, Shan Z, Ren L. Sci. Total Environ., 2021, 770: 144674

[4]

Gu B, Zhang X, Lam S K, Yu Y, van Grinsven H J M, Zhang S, Wang X, Bodirsky B L, Wang S, Duan J, Ren C, Bouwman L, de Vries W, Xu J, Sutton M A, Chen D. Nature, 2023, 613: 77

[5]

Melillo J M. Ambio, 2021, 50: 759

[6]

Gong C, Tian H, Liao H, Pan N, Pan S, Ito A, Jain A K, Kou-Giesbrecht S, Joos F, Sun Q, Shi H, Vuichard N, Zhu Q, Peng C, Maggi F, Tang F H M, Zaehle S. Nature, 2024, 632: 557

[7]

Xu H, Ma Y, Chen J, Zhang W, Yang J. Chem. Soc. Rev., 2022, 51: 2710

[8]

Duca M, Koper M T M. Energy Environ. Sci., 2012, 5: 9726

[9]

Sanchis I, Diaz E, Pizarro A H, Rodriguez J J, Mohedano A F. Sep. Purif. Technol., 2022, 290: 120750

[10]

Martínez J, Ortiz A, Ortiz I. Appl. Catal. B: Environ., 2017, 207: 42.

[11]

Zhang Q, Chen W, Yuan C, Liu H, Liang S, Tan S. Chem. Eng. J., 2024, 480: 147978

[12]

Pintar A. Catal. Today, 2003, 77: 451

[13]

Prüsse U, Vorlop K-D. J. Mol. Catal. A: Chem, 2001, 173: 313.

[14]

Li J, Zhan G, Yang J, Quan F, Mao C, Liu Y, Wang B, Lei F, Li L, Chan A W M, Xu L, Shi Y, Du Y, Hao W, Wong P K, Wang J, Dou S-X, Zhang L, Yu J C. J. Am. Chem. Soc., 2020, 142: 7036

[15]

Yao Y, Zhang L. Sci. Bull., 2022, 67: 1194.

[16]

Xu B, Li D, Zhao Q, Feng S, Peng X, Chu P K. Coord. Chem. Rev., 2024, 502: 215609

[17]

Feng G, Sun Y, Ren L, Fang Z, Chen X, Sa R, Li Q, Sun C, Ma Z. Sep. Purif. Technol., 2025, 361: 131524

[18]

Zhang H, Wang H, Cao X, Chen M, Liu Y, Zhou Y, Huang M, Xia L, Wang Y, Li T, Zheng D, Luo Y, Sun S, Zhao X, Sun X. Adv. Mater., 2024, 36: 2312746

[19]

Xu H, Ma Y, Chen J, Zhang W, Yang J. Chem. Soc. Rev., 2022, 51: 2710

[20]

Xiong Y, Wang Y, Zhou J, Liu F, Hao F, Fan Z. Adv. Mater., 2024, 36: 2304021

[21]

Cao Y, Yuan S, Meng L, Wang Y, Hai Y, Su S, Ding W, Liu Z, Li X, Luo M. ACS Sustainable Chem. Eng., 2023, 11: 7965

[22]

Wang B, Shen L. Ind. Eng. Chem. Res., 2022, 61: 18215

[23]

Service R F. Science, 2018, 361: 120

[24]

Liu H, Wei L, Liu F, Pei Z, Shi J, Wang Z, He D, Chen Y. ACS Catal., 2019, 9: 5245

[25]

Goodwin C M, Lömker P, Degerman D, Davies B, Shipilin M, Garcia-Martinez F, Koroidov S, Katja Mathiesen J, Rameshan R, Rodrigues G L S, Schlueter C, Amann P, Nilsson A. Nature, 2024, 625: 282

[26]

Spatolisano E, Figini D. Energy Convers. Manage., 2025, 337: 119904

[27]

Wang J, Feng T, Chen J, Ramalingam V, Li Z, Kabtamu D M, He J-H, Fang X. Nano Energy, 2021, 86: 106088

[28]

Pan Y, Xu H-M, Zhu H-R, Huang C-J, Zhang Z-J, Li G-R. J. Mater. Chem. A, 2025, 13: 21181

[29]

Wu Z, Song Y, Liu Y, Luo W, Li W, Yang J. Chem Catalysis, 2023, 3: 100786

[30]

Bai L, Franco F, Timoshenko J, Rettenmaier C, Scholten F, Jeon H S, Yoon A, Rüscher M, Herzog A, Haase F T, Kühl S, Chee S W, Bergmann A, Beatriz R C. J. Am. Chem. Soc., 2024, 146: 9665

[31]

Zhang S, Zha Y, Ye Y, Li K, Lin Y, Zheng L, Wang G, Zhang Y, Yin H, Shi T, Zhang H. Nano-Micro Lett., 2023, 16: 9.

[32]

Ouyang L, Liang J, Luo Y, Zheng D, Sun S, Liu Q, Hamdy M S, Sun X, Ying B. Chin. J. Catal., 2023, 50: 6

[33]

Zhu S, Qin M, Chen L, Jiang S, Zhou Y, Jiang J, Zhang W. J. Phys. Chem. Lett., 2023, 14: 4185

[34]

Irie T, Sasaki K, Das S, Negishi Y. Angew. Chem. Int. Ed., 2025, 64: e202515667

[35]

Yan J, Liu P, Li J, Huang H, Song W. Chem. Eng. J., 2023, 459: 141601

[36]

Majhi K C, Chen H, Batool A, Zhu Q, Jin Y, Liu S, Sit P H-L, Lam J C-H. Angew. Chem. Int. Ed., 2025, 64: e202505571.

[37]

Li J, Sun Y, Zhang Z. SmartMat, 2024, 5: e1209

[38]

Kwak K, Choi W, Tang Q, Kim M, Lee Y, Jiang D, Lee D. Nat. Commun., 2017, 8: 14723

[39]

Liu Z, Tan H, Li B, Hu Z, Jiang D, Yao Q, Wang L, Xie J. Nat. Commun., 2023, 14: 3374

[40]

Zhang Z., Yin R., Song Z., Zhang M., Zhang B., Lu S., Yao Q., Jiang D., Xie J., Hu W., Angew. Chem. Int. Ed., 2025, e202500389.

[41]

Mo X, Bouchet Fabre B, Herlin-Boime N, Tse E C M. SmartMat, 2023, 4: e1181

[42]

Fang F, Zhu M, Yao Q, Hu W. Sci. China Mater., 2025, 68: 3075.

[43]

Huang Y, Fuksman L, Zheng J. Dalton Trans., 2018, 47: 6267

[44]

Yao Q, Chen T, Yuan X, Xie J. Acc. Chem. Res., 2018, 51: 1338

[45]

Park H, Shin D J, Yu J. J. Chem. Educ., 2021, 98: 703

[46]

Yao Q, Zhu M, Yang Z, Song X, Yuan X, Zhang Z, Hu W, Xie J. Nat. Rev. Mater., 2025, 10: 89

[47]

Zhang M., Ji S., Zhang Z., Zhu M., Yao Q., Xie J., CCS Chem., 2025, 1.

[48]

Chen X, Ren X, Gao X. Chin. J. Chem., 2022, 40: 267.

[49]

Kang X, Chong H, Zhu M. Nanoscale, 2018, 10: 10758

[50]

Fernando A, Weerawardene K L D M, Karimova N V, Aikens C M. Chem. Rev., 2015, 115: 6112

[51]

Antonello S, Perera N V, Ruzzi M, Gascón J A, Maran F. J. Am. Chem. Soc., 2013, 135: 15585

[52]

Zhang B, Wu Z, Cao Y, Yao Q, Xie J. J. Phys. Chem. C, 2021, 125: 489

[53]

Zhu M, Yao Y, Liu Z, Chen D, Yang J, Yao Q, Hu W, Jiang Z, Xie J. Angewandte Chemie Novit, 2025, 1: e70001.

[54]

Gao X, He S, Zhang C, Du C, Chen X, Xing W, Chen S, Clayborne A, Chen W. Adv. Sci., 2016, 3: 1600126.

[55]

Zhu M, Aikens C M, Hollander F J, Schatz G C, Jin R. J. Am. Chem. Soc., 2008, 130: 5883

[56]

Nasaruddin R R, Chen T, Yan N, Xie J. Coord. Chem. Rev., 2018, 368: 60

[57]

Kawawaki T, Ebina A, Hosokawa Y, Ozaki S, Suzuki D, Hossain S, Negishi Y. Small, 2021, 17: 2170138

[58]

Franco-Ulloa S, Tatulli G, Bore S L, Moglianetti M, Pompa P P, Cascella M, De Vivo M. Nat. Commun., 2020, 11: 5422

[59]

Niu Y, Zhang Z, Zhang H, Huang M, Song J, Zeng S, Xie R, Cheng W. Matter, 2024, 7: 3163

[60]

Wang Z-Y, Zang S-Q. Chin. J. Chem., 2020, 38: 663

[61]

Al-Otaibi J S, Mary Y S, Mary Y S, Thomas R, Costa R A. J. Clust Sci., 2023, 34: 2847

[62]

Kang X, Li Y, Zhu M, Jin R. Chem. Soc. Rev., 2020, 49: 6443

[63]

Kang X, Zhu M. Chem. Soc. Rev., 2019, 48: 2422

[64]

Zhao J, Jin R. Nano Today, 2018, 18: 86

[65]

Li Q, Gao W, Wang Z, Liu W, Fu Y, Wang X, Tan L-L, Shang L, Yang Y-W. ACS Nano, 2024, 18: 22548

[66]

Biswas S, Shingyouchi Y, Kamiyama M, Ogami M, Song H, Li B, Wang S, Kawawaki T, Jiang D, Negishi Y. J. Am. Chem. Soc., 2025, 147: 23733

[67]

Zhao J, Ziarati A, Bürgi T. Angew. Chem. Int. Ed., 2025, 64: e202504320

[68]

Zhou J, Zhan W-W, Li Y, Gao X-R, Zhang C, Sun D, Yang Y. Angew. Chem. Int. Ed., 2025, 64: e202504671

[69]

Han B-L, Zhao L-C, Yuan Z-R, Wang Z, Yu Q, Luo G-G, Wang L-K, Tung C-H, Sun D. Adv. Funct. Mater., 2025, 35: 2500149

[70]

Yamazaki Y, Tomoyasu Y, Kawawaki T, Negishi Y. Nanoscale Adv., 2025, 7: 1518

[71]

Stamplecoskie K G, Kamat P V. J. Am. Chem. Soc., 2014, 136: 11093

[72]

Yao Q, Yuan X, Chen T, Leong D T, Xie J. Adv. Mater., 2018, 30: 1802751.

[73]

Yuan X, Zhang B, Luo Z, Yao Q, Leong D T, Yan N, Xie J. Angew. Chem. Int. Ed., 2014, 126: 4711.

[74]

Yu Y, Chen X, Yao Q, Yu Y, Yan N, Xie J. Chem. Mater., 2013, 25: 946

[75]

Hu F, Yang G, Zheng L-M, Liang G-J, Wang Q-M. Science, 2025, 389: 921

[76]

Liu Z, Wu Z, Yao Q, Cao Y, Chai O J H, Xie J. Nano Today, 2021, 36: 101053

[77]

Qian H, Zhu Y, Jin R. ACS Nano, 2009, 3: 3795

[78]

Cao Y, Liu T, Chen T, Zhang B, Jiang D, Xie J. Nat. Commun., 2021, 12: 3212

[79]

Zeng C, Chen Y, Das A, Jin R. J. Phys. Chem. Lett., 2015, 6: 2976

[80]

Kang X, Zhu M. Chem. Mater., 2019, 31: 9939

[81]

Wijesinghe K H, Sakthivel N A, Sementa L, Yoon B, Fortunelli A, Landman U, Dass A. J. Phys. Chem. C, 2021, 125: 20488

[82]

Hosier C A, Ackerson C J. J. Am. Chem. Soc., 2019, 141: 309

[83]

Zeng C, Liu C, Chen Y, Rosi N L, Jin R. J. Am. Chem. Soc., 2014, 136: 11922

[84]

Zeng C, Li T, Das A, Rosi N L, Jin R. J. Am. Chem. Soc., 2013, 135: 10011

[85]

George A, Sundar A, Nair A S, Maman M P, Pathak B, Ramanan N, Mandal S. J. Phys. Chem. Lett., 2019, 10: 4571

[86]

Yao Q, Yuan X, Fung V, Yu Y, Leong D T, Jiang D, Xie J. Nat. Commun., 2017, 8: 927

[87]

Bootharaju M S, Sinatra L, Bakr O M. Nanoscale, 2016, 8: 17333

[88]

Conn B E, Atnagulov A, Bhattarai B, Yoon B, Landman U, Bigioni T P. J. Phys. Chem. C, 2018, 122: 13166

[89]

Liu X, Cai X, Zhu Y. Acc. Chem. Res., 2023, 56: 1528

[90]

Qian H, Jiang D, Li G, Gayathri C, Das A, Gil R R, Jin R. J. Am. Chem. Soc., 2012, 134: 16159

[91]

Deng G, Yun H, Bootharaju M S, Sun F, Lee K, Liu X, Yoo S, Tang Q, Hwang Y J, Hyeon T. J. Am. Chem. Soc., 2023, 145: 27407

[92]

Takano S, Ito S, Tsukuda T. J. Am. Chem. Soc., 2019, 141: 15994

[93]

Tofanelli M A, Ni T W, Phillips B D, Ackerson C J. Inorg. Chem., 2016, 55: 999

[94]

Tian S, Liao L, Yuan J, Yao C, Chen J, Yang J, Wu Z. Chem. Commun., 2016, 52: 9873

[95]

Yan J, Su H, Yang H, Malola S, Lin S, Häkkinen H, Zheng N. J. Am. Chem. Soc., 2015, 137: 11880

[96]

Bhat S, Baksi A, Mudedla S K, Natarajan G, Subramanian V, Pradeep T. J. Phys. Chem. Lett., 2017, 8: 2787

[97]

Wang S, Song Y, Jin S, Liu X, Zhang J, Pei Y, Meng X, Chen M, Li P, Zhu M. J. Am. Chem. Soc., 2015, 137: 4018

[98]

Liu Y., Zheng X., Liu X., Gao T., Pinna N., Wang Y., Adv. Funct. Mater., 2025, e03708.

[99]

Mu C, Wang B, Yao Q, He Q, Xie J. Nano Res., 2024, 17: 9490

[100]

Yao Q, Feng Y, Fung V, Yu Y, Jiang D, Yang J, Xie J. Nat. Commun., 2017, 8: 1555

[101]

Dainese T, Antonello S, Bogialli S, Fei W, Venzo A, Maran F. ACS Nano, 2018, 12: 7057

[102]

Krishnadas K R, Ghosh A, Baksi A, Chakraborty I, Natarajan G, Pradeep T. J. Am. Chem. Soc., 2016, 138: 140

[103]

Krishnadas K R, Baksi A, Ghosh A, Natarajan G, Pradeep T. Nat. Commun., 2016, 7: 13447

[104]

Yadav V, Jana A, Acharya S, Malola S, Nagar H, Sharma A, Kini A R, Antharjanam S, Machacek J, Adarsh K N V D, Base T, Häkkinen H, Pradeep T. Nat. Commun., 2025, 16: 1197

[105]

Tang Z, Ahuja T, Wang S, Wang G. Nanoscale, 2012, 4: 4119

[106]

Suzuki R, Chen Y, Ogawa Y, Enokido M, Kitagawa Y, Hasegawa Y, Konishi K, Shichibu Y. J. Phys. Chem. Lett., 2025, 16: 1432

[107]

Luo X, Kong J, Xiao H, Sang D, He K, Zhou M, Liu J. Angew. Chem. Int. Ed., 2024, 63: e202404129

[108]

Chevrier D M, Meng X, Tang Q, Jiang D, Zhu M, Chatt A, Zhang P. J. Phys. Chem. C, 2014, 118: 21730

[109]

Wang T, Wang D, Padelford J W, Jiang J, Wang G. J. Am. Chem. Soc., 2016, 138: 6380

[110]

Matus M F, Malola S, Bonilla E K, Barngrover B M, Aikens C M, Häkkinen H. Chem. Commun., 2020, 56: 8087

[111]

Qian H. Pure Appl. Chem., 2014, 86: 27

[112]

Song Y, Wang S, Zhang J, Kang X, Chen S, Li P, Sheng H, Zhu M. J. Am. Chem. Soc., 2014, 136: 2963

[113]

Wan X-K, Yuan S-F, Lin Z-W, Wang Q-M. Angew. Chem. Int. Ed., 2014, 53: 2923

[114]

Lei Z, Wan X-K, Yuan S-F, Guan Z-J, Wang Q-M. Acc. Chem. Res., 2018, 51: 2465

[115]

Narouz M R, Takano S, Lummis P A, Levchenko T I, Nazemi A, Kaappa S, Malola S, Yousefalizadeh G, Calhoun L A, Stamplecoskie K G, Häkkinen H, Tsukuda T, Crudden C M. J. Am. Chem. Soc., 2019, 141: 14997

[116]

Narouz M R, Osten K M, Unsworth P J, Man R W Y, Salorinne K, Takano S, Tomihara R, Kaappa S, Malola S, Dinh C-T, Padmos J D, Ayoo K, Garrett P J, Nambo M, Horton J H, Sargent E H, Häkkinen H, Tsukuda T, Crudden C M. Nat. Chem., 2019, 11: 419

[117]

Shichibu Y, Negishi Y, Watanabe T, Chaki N K, Kawaguchi H, Tsukuda T. J. Phys. Chem. C, 2007, 111: 7845

[118]

Shan H, Shi J, Chen T, Cao Y, Yao Q, An H, Yang Z, Wu Z, Jiang Z, Xie J. ACS Nano, 2023, 17: 2368

[119]

Zhang Y, He S-R, Yang Y, Zhang T-S, Zhu Z-M, Fei W, Li M-B. J. Am. Chem. Soc., 2023, 145: 12164

[120]

Kwak K, Lee D. J. Phys. Chem. Lett., 2012, 3: 2476

[121]

Liu Z, Chen J, Li B, Jiang D, Wang L, Yao Q, Xie J. J. Am. Chem. Soc., 2024, 146: 11773

[122]

Shen H, Xu Z, Hazer M S A, Wu Q, Peng J, Qin R, Malola S, Teo B K, Häkkinen H, Zheng N. Angew. Chem. Int. Ed., 2021, 60: 3752

[123]

Good J, Duchesne P N, Zhang P, Koshut W, Zhou M, Jin R. Catal. Today, 2017, 280: 239

[124]

Zhao S, Jin R, Abroshan H, Zeng C, Zhang H, House S D, Gottlieb E, Kim H J, Yang J C, Jin R. J. Am. Chem. Soc., 2017, 139: 1077

[125]

Nie X, Qian H, Ge Q, Xu H, Jin R. ACS Nano, 2012, 6: 6014

[126]

Yin S, Li J, Zhang H. Green Chem., 2016, 18: 5900

[127]

Liu L, Song Y, Chong H, Yang S, Xiang J, Jin S, Kang X, Zhang J, Yu H, Zhu M. Nanoscale, 2016, 8: 1407

[128]

Li Y-M, Hu J, Zhu M. Coord. Chem. Rev., 2023, 495: 215364

[129]

Yun Y, Sheng H, Bao K, Xu L, Zhang Y, Astruc D, Zhu M. J. Am. Chem. Soc., 2020, 142: 4126

[130]

Wang H, Liu X, Zhao Y, Sun Z, Lin Y, Yao T, Jiang H-L. Natl. Sci. Rev., 2024, 11: nwae252

[131]

Yao A, Du Y, Han M, Wang Y, Hu J, Zhu Q, Sheng H, Zhu M. Nano Res., 2023, 16: 1527

[132]

Wang H, Zhang X, Zhang W, Zhou M, Jiang H-L. Angew. Chem. Int. Ed., 2024, 63: e202401443

[133]

Xu B, Li D, Zhao Q, Feng S, Peng X, Chu P K. Coordination Chemistry Reviews, 2024, 502: 215609

[134]

Wu Z, Song Y, Guo H, Xie F, Cong Y, Kuang M, Yang J. Interdiscip. Mater., 2024, 3: 245

[135]

Yin S, Cao R, Han Y, Shang J, Zhang J, Jiang W, Liu G. Journal of Energy Chemistry, 2024, 96: 642

[136]

Tang Y, Qin L, Liu Y, Qiao L, Chi K, Tang Z. Catal. Sci. Technol., 2024, 14: 241

[137]

Lange R, Maisonhaute E, Robin R, Vivier V. Electrochem. Commun., 2013, 29: 25

[138]

Sicsic D, Balbaud-Célérier F, Tribollet B. Eur. J. Inorg. Chem., 2014, 2014: 6174

[139]

Li Y, Go Y K, Ooka H, He D, Jin F, Kim S H, Nakamura R. Angew. Chem. Int. Ed., 2020, 59: 9744

[140]

Li Y, Go Y K, Ooka H, He D, Jin F, Kim S H, Nakamura R. Angew. Chem. Int. Ed., 2020, 59: 9744

[141]

Xu H, Wu J, Luo W, Li Q, Zhang W, Yang J. Small, 2020, 16: 2001775

[142]

Duca M, Koper M T M. Energy Environ. Sci., 2012, 5: 9726

[143]

Tang Y, Jiang Z, Yuan Y, Xu L, Jin C, Chen B, Lin Z, Zao J, Du J, Zhang X, Gao X, Liang Y. Nat. Commun., 2024, 15: 9800

[144]

Jia S, Wu L, Tan X, Feng J, Ma X, Zhang L, Song X, Xu L, Zhu Q, Kang X, Sun X, Han B. J. Am. Chem. Soc., 2024, 146: 10934

[145]

Wang S, Sun B, Zhao J, Zhang X, Zong B. ACS Sustainable Chem. Eng., 2025, 13: 1853

[146]

Norrrahim M N F, Razak M A I A, Shah N A A, Kasim H, Yusoff W Y W, Halim N A, Nor S A M, Jamal S H, Ong K K, Yunus W M Z W, Knight V F, Kasim N A M. RSC Adv., 2020, 10: 4465.

[147]

Rykaczewski K A, Wearing E R, Blackmun D E, Schindler C S. Nat. Synth., 2022, 1: 24

[148]

Yuan Y, Chen L, Wan Z, Shi K, Teng X, Xu H, Wu P, Shi J. Sci. Adv., 2024, 10: eado1755

[149]

Katsounaros I, Kyriacou G. Electrochim. Acta, 2008, 53: 5477

[150]

Bonner F T, Hughes M N. Comments Inorg. Chem., 1988, 7: 215

[151]

Gootzen J F E, Peeters P G J M, Dukers J M B, Lefferts L, Visscher W, van Veen J A R. J. Electroanal. Chem., 1997, 434: 171

[152]

Negahdar L, Omori N E, Quesne M G, Frogley M D, Cacho-Nerin F, Jones W, Price S W T, Catlow C R A, Beale A M. ACS Catal., 2021, 11: 13091

[153]

de Vooys A C A, Koper M T M, van Santen R A, van Veen J A R. J. Catal., 2001, 202: 387

[154]

Dutton A S, Fukuto J M, Houk K N. Inorg. Chem., 2005, 44: 4024

[155]

Duca M, Cucarella M O, Rodriguez P, Koper M T M. J. Am. Chem. Soc., 2010, 132: 18042

[156]

Carvalho O Q, Marks R, Nguyen H K K, Vitale-Sullivan M E, Martinez S C, Árnadóttir L, Stoerzinger K A. J. Am. Chem. Soc., 2022, 144: 14809

[157]

Yao Y, Zhang L. Sci. Bull., 2022, 67: 1194.

[158]

Liang C, Wei X-Y, Liu W, Zhang Y-Z, Ma Z-J, Liu H-Y, Niu C-G, Jiang L-S. Coord. Chem. Rev., 2025, 522: 216174

[159]

Zhang Y, Gao T, Zhang F, Qu X, Luo Y, Zhang P, Liang J, Song Y, Fang F, Wang F, Sun D, Liu Y. Adv. Energy Mater., 2024, 14: 2401834

[160]

Gao W, Xie K, Xie J, Wang X, Zhang H, Chen S, Wang H, Li Z, Li C. Adv. Mater., 2023, 35: 2202952

[161]

Da Y, Jiang R, Tian Z, Han X, Chen W, Hu W. SmartMat, 2023, 4: e1136

[162]

Liu J, Lee C, Hu Y, Liang Z, Ji R, Soo X Y D, Zhu Q, Yan Q. SmartMat, 2023, 4: e1210

[163]

Chen J, Arce-Ramos J M, Katsounaros I, de Smit E, Abubakar S M, Lum Y, Zhang J, Wang L. SmartMat, 2025, 6: e70010

[164]

Zhong W, Chen Y, Chen P, Chen Q, Yang C, Zhang N, Liu X, Lin Z. Angew. Chem. Int. Ed., 2025, 64: e202503117

[165]

Kempler P A, Nielander A C. Nat. Commun., 2023, 14: 1158

[166]

Shrestha S, Wang B, Dutta P. Adv. Colloid Interface Sci., 2020, 279: 102162

[167]

Chakraborty I, Pradeep T. Chem. Rev., 2017, 117: 8208

[168]

Li L, Zhang Z. SmartMat, 2024, 5: e1239

[169]

Liu L, Corma A. Chem. Rev., 2018, 118: 4981

[170]

Seong H, Efremov V, Park G, Kim H, Yoo J S, Lee D. Angew. Chem. Int. Ed., 2021, 60: 14563

[171]

Wang J, Cai J, Ren K-X, Liu L, Zheng S-J, Wang Z-Y, Zang S-Q. Sci. Adv., 2024, 10: eadn7556

[172]

Kumar B, Kawawaki T, Shimizu N, Imai Y, Suzuki D, Hossain S, Nair L V, Negishi Y. Nanoscale, 2020, 12: 9969

[173]

Perovic M, Qin Q, Oschatz M. Adv. Funct. Mater., 2020, 30: 1908371

[174]

Li T, Deng Y, Rong X, He C, Zhou M, Tang Y, Zhou H, Cheng C, Zhao C. SmartMat, 2023, 4: e1142

[175]

Yang T, Cheng C, Xiao L, Wang M, Zhang F, Wang J, Yin P, Shen G, Yang J, Dong C, Liu H, Du X. SmartMat, 2024, 5: e1204

[176]

Li M, Tian S, Wu Z. Chin. J. Chem., 2017, 35: 567

[177]

Mu C, Liu Z, Yao Q, He Q, Xie J. SmartMat, 2025, 6: e1317

[178]

Ma G, Sun F, Qiao L, Shen Q, Wang L, Tang Q, Tang Z. Nano Res., 2023, 16: 10867

[179]

Tang S, Song T, Cai X, Ding W, Zhu Y. Chem. Commun., 2024, 60: 7785

[180]

Huang J-H, Zhang H, Wang Z-Y, Hu J-H, Li J, Cai J, Zang S-Q. J. Am. Chem. Soc., 2025, 147: 16593

[181]

Qin L, Sun F, Gong Z, Ma G, Chen Y, Tang Q, Qiao L, Wang R, Liu Z-Q, Tang Z. ACS Nano, 2023, 17: 12747

[182]

Wu Y, Zhao J, Wang C, Li T, Zhao B-H, Song Z, Liu C, Zhang B. Nat. Commun., 2023, 14: 3057

[183]

Song T, Shen C, Tian Y, Zhai Q, Tang S, Zhu Y. Angew. Chem. Int. Ed., 2025, 64: e202507569

[184]

Ansar S M, Kitchens C L. ACS Catal., 2016, 6: 5553

[185]

Kong X, Liu B, Tong Z, Bao R, Yi J, Bu S, Liu Y, Wang P, Lee C-S, Zhang W. SmartMat, 2024, 5: e1262

[186]

Wang Y, Zhu C, Pfattner R, Yan H, Jin L, Chen S, Molina-Lopez F, Lissel F, Liu J, Rabiah N I, Chen Z, Chung J W, Linder C, Toney M F, Murmann B, Bao Z. Sci. Adv., 2017, 3: e1602076

[187]

Kwak K, Lee D. J. Phys. Chem. Lett., 2012, 3: 2476

[188]

Shan H, Shi J, Chen T, Cao Y, Yao Q, An H, Yang Z, Wu Z, Jiang Z, Xie J. ACS Nano, 2023, 17: 2368

[189]

Chen H, Qi K-S, Dong X-Y, Pei Y-N, Jin Y-J, Zhang H, Li S, Wu J, Cai J, Zang S-Q. Angew. Chem. Int. Ed., 2025, 64: e202510429

[190]

Zheng S-J, Dong X-Y, Chen H, Huang R-W, Cai J, Zang S-Q. Angew. Chem. Int. Ed., 2025, 64: e202413033

[191]

Wang Q, Astruc D. Chem. Rev., 2020, 120: 1438

[192]

Wender H, Migowski P, Feil A F, Teixeira S R, Dupont J. Coord. Chem. Rev., 2013, 257: 2468

[193]

Ahmed R. SmartMat, 2023, 4: e1195

[194]

Wang Y, Wang Y. SmartMat, 2023, 4: e1130

[195]

Xie Z, Hwang S, Chen J G. SmartMat, 2023, 4: e1201

[196]

Liu M, Ren X, Meng X, Li H. Chin. J. Chem., 2021, 39: 473

[197]

Yonesato K, Yamazoe S, Yokogawa D, Yamaguchi K, Suzuki K. Angew. Chem. Int. Ed., 2021, 60: 16994

[198]

Liu L, Zheng S-J, Chen H, Cai J, Zang S-Q. Angew. Chem. Int. Ed., 2024, 63: e202316910

[199]

Gu X, Zhang J, Guo S, Zhang Y, Xu L, Jin R, Li G. J. Am. Chem. Soc., 2025, 147: 22785

[200]

Li Q, Li Y, Xu B, Yang J, Wang Y. Angew. Chem. Int. Ed., 2025, 64: e202510139

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

7

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/