High-performance n-Type Polymers Based on Multiple Electron-withdrawing Groups Decorated (E)-1,2-Di(thiophen-2-yl)ethene Building Blocks

Jianeng Ma , Yongsheng Chen , Jiawei Chen , Jie Tang , Yanru Li , Ruiping Li , Liyang Yu , Zhuping Fei

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (6) : 1645 -1652.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (6) :1645 -1652. DOI: 10.1007/s40242-025-5229-z
Article
research-article

High-performance n-Type Polymers Based on Multiple Electron-withdrawing Groups Decorated (E)-1,2-Di(thiophen-2-yl)ethene Building Blocks

Author information +
History +
PDF

Abstract

The performance of n-type conjugated polymers lags far behind that of p-type polymers, which significantly restricts the development of organic electronics. The (E)-1,2-di(thiophen-2-yl)ethene (TVT) unit, owing to its unique advantages, has been widely applied in the design of p-type polymer semiconductors. Previous studies have demonstrated that introducing electron-withdrawing groups can lower the frontier orbital energy levels of polymers and enhance electron injection/transporting capabilities. Based on this, we proposed incorporating multiple electronwithdrawing groups, such as amide groups, fluorine atoms, and cyano groups, into the polymer backbones of TVT-based polymer to facilitate the electron transport. We successfully designed and synthesized the polymers TVTDA-4FTVT and TVTDA-2F2CNTVT. Both polymers exhibited low frontier orbital energy levels. Due to its significantly higher crystallization tendency and favorable intermolecular packing structure, the organic field-effect transistor (OFET) device based on TVTDA-4FTVT demonstrated an electron mobility one order of magnitude higher than that of TVTDA-2F2CNTVT. TVTDA-4FTVT showed the highest electron mobility of 0.87 cm2·V−1·s−1, while TVTDA-2F2CNTVT exhibited the highest electron mobility of 0.049 cm2·V−1·s−1. Owing to its deeper lowest unoccupied molecular orbital (LUMO) level, the OFET devices based on TVTDA-2F2CNTVT showed good air stability after being placed in a natural environment for 15 d.

Keywords

Organic field-effect transistor / Electron-withdrawing group / n-Type / Mobility / Conjugated polymer

Cite this article

Download citation ▾
Jianeng Ma, Yongsheng Chen, Jiawei Chen, Jie Tang, Yanru Li, Ruiping Li, Liyang Yu, Zhuping Fei. High-performance n-Type Polymers Based on Multiple Electron-withdrawing Groups Decorated (E)-1,2-Di(thiophen-2-yl)ethene Building Blocks. Chemical Research in Chinese Universities, 2025, 41(6): 1645-1652 DOI:10.1007/s40242-025-5229-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang C, Zhang X, Hu W. Chemical Society Reviews, 2020, 49: 653

[2]

Paterson A F, Singh S, Fallon K J, Hodsden T, Han Y, Schroeder B C, Bronstein H, Heeney M, McCulloch I, Anthopoulos T D. Advanced Materials, 2018, 30: 1801079.

[3]

Yang J, Zhao Z, Wang S, Guo Y, Liu Y. Chem, 2018, 4: 2748

[4]

Sirringhaus H. Advanced Materials, 2014, 26: 1319

[5]

Kwon H-J, Tang X, Shin S, Hong J, Jeong W, Jo Y, An T K, Lee J, Kim S H. ACS Applied Materials & Interfaces, 2020, 12: 30600

[6]

Tang X, Murali G, Lee H, Park S, Lee S, Oh S M, Lee J, Ko T Y, Koo C M, Jeong Y J, An T K, In I, Kim S H. Advanced Functional Materials, 2021, 31: 2010897

[7]

Fukuda K, Takeda Y, Yoshimura Y, Shiwaku R, Tran L T, Sekine T, Mizukami M, Kumaki D, Tokito S. Nature Communications, 2014, 5: 4147

[8]

Baeg K-J, Caironi M, Noh Y-Y. Advanced Materials, 2013, 25: 4210

[9]

Yao Y, Dong H, Hu W. Advanced Materials, 2016, 28: 4513

[10]

Klauk H. Chemical Society Reviews, 2010, 39: 2643

[11]

Zhu X, Zhang S-R, Zhou Y, Han S-T. Polymer International, 2021, 70: 358

[12]

Xie Y, Ding C, Jin Q, Zheng L, Xu Y, Xiao H, Cheng M, Zhang Y, Yang G, Li M, Li L, Liu M. SmartMat, 2024, 5: e1261

[13]

Quinn J T E, Zhu J, Li X, Wang J, Li Y. Journal of Materials Chemistry C, 2017, 5: 8654

[14]

Yan L, Su N, Yang Y, Li X, Sun J, Wang S, Zhao L, Ding L, Ding J. SmartMat, 2024, 5: 5, e1272.

[15]

Liu J, Li W, Xian K, Liu Z, Li Y, Yao X, Ye L, Zhao Y, Fei Z. Chinese Journal of Chemistry, 2023, 41: 2525

[16]

Wei X, Zhang W, Yu G. Advanced Functional Materials, 2021, 31: 2010979

[17]

Shi L, Guo Y, Hu W, Liu Y. Materials Chemistry Frontiers, 2017, 1: 2423

[18]

Luo N, Ren P, Feng Y, Shao X, Zhang H-L, Liu Z. Journal of Physical Chemistry Letters, 2022, 13: 1131

[19]

Xu J, Wang S, Wang G-J N, Zhu C, Luo S, Jin L, Gu X, Chen S, Feig V R, To J W F, Rondeau-Gagné S, Park J, Schroeder B C, Lu C, Oh J Y, Wang Y, Kim Y-H, Yan H, Sinclair R, Zhou D, Xue G, Murmann B, Linder C, Cai W, Tok J B H, Chung J W, Bao Z. Science, 2017, 355: 59

[20]

Zhang S, Liu Y, Dong H, Li Y, Zhang K, Xian K, Han Y, Ye L, Heeney M, Fei Z. Angewandte Chemie International Edition, 2025, 64: e202500860

[21]

Yang K, Chen Z, Wang Y, Guo X. Accounts of Materials Research, 2023, 4: 237

[22]

Kim M, Ryu S U, Park S A, Choi K, Kim T, Chung D, Park T. Advanced Functional Materials, 2020, 30: 1904545

[23]

Cheon H J, An T K, Kim Y-H. Macromolecular Research, 2022, 30: 2, 71.

[24]

Liu Q, Bottle S E, Sonar P. Advanced Materials, 2020, 32: 1903882

[25]

Hwang J, Shin J, Lee W H. Macromolecular Research, 2025, 33: 1

[26]

Kang I, Yun H-J, Chung D S, Kwon S-K, Kim Y-H. Journal of the American Chemical Society, 2013, 135: 14896

[27]

Kim G, Kang S-J, Dutta G K, Han Y-K, Shin T J, Noh Y-Y, Yang C. Journal of the American Chemical Society, 2014, 136: 9477

[28]

Sun H, Guo X, Facchetti A. Chem, 2020, 6: 1310

[29]

Kim H S, Huseynova G, Noh Y-Y, Hwang D-H. Macromolecules, 2017, 50: 7550

[30]

Chen J, Yang J, Guo Y, Liu Y. Advanced Materials, 2022, 34: 2104325

[31]

Zhao Y, Guo Y, Liu Y. Advanced Materials, 2013, 25: 5372

[32]

Guo X, Facchetti A, Marks T J. Chemical Reviews, 2014, 114: 8943

[33]

Yang Y, Liu Z, Zhang G, Zhang X, Zhang D. Advanced Materials, 2019, 31: 1903104

[34]

Chen Z, Zheng Y, Yan H, Facchetti A. Journal of the American Chemical Society, 2009, 131: 8

[35]

Zhan X, Tan Z A, Domercq B, An Z, Zhang X, Barlow S, Li Y, Zhu D, Kippelen B, Marder S R. Journal of the American Chemical Society, 2007, 129: 7246

[36]

Yan H, Chen Z, Zheng Y, Newman C, Quinn J R, Dötz F, Kastler M, Facchetti A. Nature, 2009, 457: 679

[37]

Zhao Z, Yin Z, Chen H, Zheng L, Zhu C, Zhang L, Tan S, Wang H, Guo Y, Tang Q, Liu Y. Advanced Materials, 2017, 29: 1602410.

[38]

Al Kobaisi M, Bhosale S V, Latham K, Raynor A M, Bhosale S V. Chemical Reviews, 2016, 116: 11685.

[39]

Nielsen C B, Turbiez M, McCulloch I. Advanced Materials, 2013, 25: 1859

[40]

Zhang X, Richter L J, DeLongchamp D M, Kline R J, Hammond M R, McCulloch I, Heeney M, Ashraf R S, Smith J N, Anthopoulos T D, Schroeder B, Geerts Y H, Fischer D A, Toney M F. Journal of the American Chemical Society, 2011, 133: 15073

[41]

Yan X, Xiong M, Li J-T, Zhang S, Chase Z A, Lu Y, Wang Z-Y, Yao Z-F, Wang J-Y, Gu X, Lei T. Journal of the American Chemical Society, 2019, 141: 20215

[42]

Yun H-J, Kang S-J, Xu Y, Kim S O, Kim Y-H, Noh Y-Y, Kwon S-K. Advanced Materials, 2014, 26: 7300

[43]

Gao Y, Deng Y, Tian H, Zhang J, Yan D, Geng Y, Wang F. Advanced Materials, 2017, 29: 1606217.

[44]

Lei T, Cao Y, Fan Y, Liu C-J, Yuan S-C, Pei J. Journal of the American Chemical Society, 2011, 133: 6099

[45]

Wei H, Liu Y, Liu Z, Guo J, Chen P-A, Qiu X, Dai G, Li Y, Yuan J, Liao L, Hu Y. Advanced Electronic Materials, 2020, 6: 1901241

[46]

Guo X, Ortiz R P, Zheng Y, Hu Y, Noh Y-Y, Baeg K-J, Facchetti A, Marks T J. Journal of the American Chemical Society, 2011, 133: 1405

[47]

Letizia J A, Salata M R, Tribout C M, Facchetti A, Ratner M A, Marks T J. Journal of the American Chemical Society, 2008, 130: 9679

[48]

Wang Y, Tan A T-R, Mori T, Michinobu T. Journal of Materials Chemistry C, 2018, 6: 3593

[49]

Reichenbächer K, Süss H I, Hulliger J. Chemical Society Reviews, 2005, 34: 22

[50]

Wang M, Ford M J, Zhou C, Seifrid M, Nguyen T-Q, Bazan G C. Journal of the American Chemical Society, 2017, 139: 17624

[51]

Huang H, Yang L, Facchetti A, Marks T J. Chemical Reviews, 2017, 117: 10291

[52]

Chen Z, Zhang W, Huang J, Gao D, Wei C, Lin Z, Wang L, Yu G. Macromolecules, 2017, 50: 6098

[53]

Wei C, Tang Z, Zhang W, Huang J, Zhou Y, Wang L, Yu G. Polymer Chemistry, 2020, 11: 7340

[54]

Sui Y, Shi Y, Deng Y, Li R, Bai J, Wang Z, Dang Y, Han Y, Kirby N, Ye L, Geng Y. Macromolecules, 2020, 53: 10147

[55]

Guo K, Bai J, Jiang Y, Wang Z, Sui Y, Deng Y, Han Y, Tian H, Geng Y. Advanced Functional Materials, 2018, 28: 1801097.

[56]

Chen H, Guo Y, Yu G, Zhao Y, Zhang J, Gao D, Liu H, Liu Y. Advanced Materials, 2012, 24: 4618

[57]

Gao Y, Bai J, Sui Y, Han Y, Deng Y, Tian H, Geng Y, Wang F. Macromolecules, 2018, 51: 8752

[58]

Zhang C, Tan W L, Liu Z, He Q, Li Y, Ma J, Chesman A S R, Han Y, McNeill C R, Heeney M, Fei Z. Macromolecules, 2022, 55: 4429

[59]

Gao Y, Zhang X, Tian H, Zhang J, Yan D, Geng Y, Wang F. Advanced Materials, 2015, 27: 6753

[60]

Su Y, Zhao L, Zhang S, Chen J, Li Y, Jiang T, Li J, Ji D, Li L, Fei Z. Chemical Research in Chinese Universities, 2024, 40: 1266

[61]

Wang H-C, Wang C-C, Chen Y, Cao J, Ren X, Hong W, Xu Y-X. Journal of Materials Chemistry C, 2021, 9: 13218

[62]

McCulloch I, Salleo A, Chabinyc M. Science, 2016, 352: 1521

[63]

Bittle E G, Basham J I, Jackson T N, Jurchescu O D, Gundlach D J. Nature Communications, 2016, 7: 10908

[64]

Nicolai H T, Kuik M, Wetzelaer G A H, de Boer B, Campbell C, Risko C, Brédas J L, Blom P W M. Nature Materials, 2012, 11: 882

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/