Biofunctional Interfaces: The Role of Hydrogels in Organic Transistors

Yunhan Niu , Yinan Huang , Xiaosong Chen , Jiajun Song , Zhongwu Wang , Mengxiao Sun , Liqiang Li

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (6) : 1387 -1404.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (6) :1387 -1404. DOI: 10.1007/s40242-025-5224-4
Review
review-article

Biofunctional Interfaces: The Role of Hydrogels in Organic Transistors

Author information +
History +
PDF

Abstract

Over the past four decades, organic electronics has progressed from a specialized domain within polymer physics into a highly interdisciplinary research field, with organic electrochemical transistors (OECTs) and organic field-effect transistors (OFETs) at its forefront. However, the widespread adoption of these devices in bioelectronics and wearable technologies has been hindered by the inherent rigidity, hydrophobicity, and limited biocompatibility of conventional interfacial materials. Hydrogels, three-dimensional hydrophilic polymer networks, offer a promising alternative, combining ionic conductivity, tissue-like mechanical softness, and excellent biocompatibility. This review systematically outlines recent advances in hydrogel-based organic electronics, encompassing the classification and essential characteristics of natural, synthetic, and hybrid hydrogels. It further elaborates on their roles in OECTs (as electrolytes and active channels) and OFETs (such as low-voltage gate dielectrics), clarifies operational mechanisms and performance enhancement strategies, and addresses key challenges, including dehydration and interfacial adhesion. Finally, the review prospects future applications in wearable bioelectronics and neuromorphic computing, aiming to serve as a foundational reference for cross-disciplinary studies.

Keywords

Organic transistor / Hydrogel / Biosensing / Flexible electronics / Bioelectronics

Cite this article

Download citation ▾
Yunhan Niu, Yinan Huang, Xiaosong Chen, Jiajun Song, Zhongwu Wang, Mengxiao Sun, Liqiang Li. Biofunctional Interfaces: The Role of Hydrogels in Organic Transistors. Chemical Research in Chinese Universities, 2025, 41(6): 1387-1404 DOI:10.1007/s40242-025-5224-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bahrani S, Hashemi S A, Mousavi S M, Arjmand M, Ghalamfarsa F, Ghaedi M. Conductive Polymers in Analytical Chemistry, 2022, Washington. American Chemical Society.

[2]

Koezuka H, Tsumura A, Ando T. Synth. Met., 1987, 18: 699

[3]

Jia H, Zou X, Sun Q, Liu X. Materials China, 2021, 40: 982

[4]

Chennit K, Delavari N, Mekhmoukhen S, Boukraa R, Fillaud L, Zrig S, Battaglini N, Piro B, Noël V, Zozoulenko I, Mattana G. Adv. Mater. Technol., 2023, 8: 2200300

[5]

Gao L, Wu M, Yu X, Yu J. Int. J. Extreme Manuf., 2023, 6: 012005.

[6]

Marquez A V, McEvoy N, Pakdel A. Molecules., 2020, 25: 5288

[7]

Rivnay J, Leleux P, Ferro M, Sessolo M, Williamson A, Koutsouras D A, Khodagholy D, Ramuz M, Strakosas X, Owens R M. Sci. Adv., 2015, 1: e1400251

[8]

Gao Q, Fu J, Li S, Ming D. Biosensors (Basel), 2023, 13: 469

[9]

Hu Y, Zheng L, Li J, Huang Y, Wang Z, Lu X, Yu L, Wang S, Sun Y, Ding S, Ji D, Lei Y, Chen X, Li L, Hu W. Adv. Sci., 2023, 10: 2205694

[10]

Cheng S, Zhu R, Xu X. Commun. Mater., 2024, 5: 99

[11]

Guo L Q, Han H, Zhu L Q, Guo Y B, Yu F, Ren Z Y, Xiao H, Ge Z Y, Ding J N. ACS Appl. Mater. Interfaces, 2019, 11: 28352

[12]

Singh G, Chanda A. Biomed. Mater., 2021, 16: 062004

[13]

Li G, Liu Y, Chen Y, Xia Y, Qi X, Wan X, Jin Y, Liu J, He Q, Li K, Tang J. SmartMat, 2023, 5: e1173.

[14]

Gregorio T, Mombru D, Romero M, Faccio R, Mombru A W. Polymers (Basel), 2024, 16: 1478

[15]

Li P, Lei T. Acc. Mater. Res., 2025, 6: 853

[16]

Zhu T, Ni Y, Biesold G M, Cheng Y, Ge M, Li H, Huang J, Lin Z, Lai Y. Chem. Soc. Rev., 2023, 52: 473

[17]

Sunwoo S H, Ha K H, Lee S, Lu N, Kim D H. Annu. Rev. Chem. Biomol. Eng., 2021, 12: 359

[18]

Tepermeister M, Bosnjak N, Dai J, Zhang X, Kielar S M, Wang Z, Tian Z, Suntivich J, Silberstein M N. Front. Phys., 2022, 10: 890845.

[19]

Wang T, Liu J, Zhao Y, Lu Y. Bioact. Mater., 2025, 52: 300

[20]

Peng Y, Gao L, Liu C, Guo H, Huang W, Zheng D. Small, 2025, 21: 2409384

[21]

Wang D, Zhao S, Yin R, Li L, Lou Z, Shen G. NPJ Flex. Electron., 2021, 5: 13

[22]

Lou J, Mooney D J. Nat. Rev. Chem., 2022, 6: 726

[23]

Hou Y, Ma S, Hao J, Lin C, Zhao J, Sui X. Polymers (Basel), 2022, 14: 4037

[24]

Sun H, Wang S, Yang F, Tan M, Bai L, Wang P, Feng Y, Liu W, Wang R, He X. Mater. Horiz., 2023, 10: 5805

[25]

Ribeiro M, Simões M, Vitorino C, Mascarenhas-Melo F. Gels, 2024, 10: 188

[26]

Cao L, Qiu X, Jiao Q, Zhao P, Li J, Wei Y. Int. J. Biol. Macromol., 2021, 173: 225

[27]

Chang Q, Darabi M A, Liu Y, He Y, Zhong W, Mequanin K, Li B, Lu F, Xing M M Q. J. Mater. Chem. A, 2019, 7: 24626

[28]

Priya A S, Premanand R, Ragupathi I, Bhaviripudi V R, Aepuru R, Kannan K, Shanmugaraj K. J. Compos. Sci., 2024, 8: 457

[29]

Dai S, Dai Y, Zhao Z, Xia F, Li Y, Liu Y, Cheng P, Strzalka J, Li S, Li N, Su Q, Wai S, Liu W, Zhang C, Zhao R, Yang J J, Stevens R, Xu J, Huang J, Wang S. Matter., 2022, 5: 3375

[30]

Li T, Qi H, Dong X, Li G, Zhai W. Adv. Mater., 2024, 36: 2304145

[31]

Hu Z, Zhang H, Liu H, Li J, Ji X, Tang B Z. SmartMat, 2023, 5: e1184.

[32]

Shen Q, Fang C, Hu L, Serpe M J. SmartMat, 2024, 5: e1254

[33]

Xu Y, Zhan X, Du J, Wu Z, Zhang D. Chem. Eng. J., 2024, 489: 151303

[34]

Karoyo A H, Wilson L D. Mater., 2021, 14: 1095

[35]

Wang Z, Chen X, Yu L, Guo S, Hu Y, Huang Y, Wang S, Qi J, Han C, Ma X, Zhang X, Dong H, Chen W, Li L, Hu W. ACS Appl. Mater. Interfaces, 2022, 14: 13584

[36]

Jiang C, Zhu T, Liu H, Yang G, He Z, Wang M, Ji M, Cong G, Yu J, Zhu C, Xu J. J. Mater. Chem. A, 2020, 8: 22090

[37]

Wang X, Zheng S, Xiong J, Liu Z, Li Q, Li W, Yan F. Adv. Mater., 2024, 36: 2313845

[38]

Bowen S D, Herrera L D, Hallinan D T. ACS Omega., 2025, 10: 38413

[39]

Han S, Yu S, Hu S, Chen H-j, Wu J, Liu C. J. Mater. Chem. C, 2021, 9: 11801

[40]

Azimi M, Subramanian A, Fan J, Soavi F, Cicoira F. J. Mater. Chem. C, 2023, 11: 4623

[41]

Li D, Zhan W, Zuo W, Li L, Zhang J, Cai G, Tian Y. Chem. Eng. J., 2022, 450: 138417

[42]

Segneanu A E, Bejenaru L E, Bejenaru C, Blendea A, Mogosanu G D, Bita A, Boia E R. Polymers (Basel), 2025, 17: 2026

[43]

Xu W, Gu Y, Xia W, Yu A, Fan W, Qian S, Shu Q, Liu B, Li Y. ACS Sens., 2025, 10: 5199

[44]

Lu D, Chen H. J. Mater. Chem. A, 2025, 13: 136

[45]

Stephen M, Nawaz A, Lee S Y, Sonar P, Leong W L. Adv. Funct. Mater., 2022, 33: 2208521.

[46]

Yan J, Armstrong J P K, Scarpa F, Perriman A W. Adv. Mater., 2024, 36: e2403937

[47]

Zhu L M, Dai C Q, Chen S K, Liu A R, Zhan R Z, Ming F F, Deng S Z. J. Mater. Chem. C, 2025, 13: 9374

[48]

Kim C H, Azimi M, Fan J, Nagarajan H, Wang M, Cicoira F. Nanoscale, 2023, 15: 3263

[49]

Lopez-Larrea N, Wustoni S, Penas M I, Uribe J, Dominguez-Alfaro A, Gallastegui A, Inal S, Mecerreyes D. Adv. Funct. Mater., 2024, 34: 2403708

[50]

Khan A Q, Shafiq M, Li J, Yu K, Liu Z, Zhou X, Zhu M. SmartMat, 2023, 4: e1189

[51]

Dai Y, Wai S, Li P, Shan N, Cao Z, Li Y, Wang Y, Liu Y, Liu W, Tang K, Liu Y, Hua M, Li S, Li N, Chatterji S, Fry H C, Lee S, Zhang C, Weires M, Sutyak S, Shi J, Zhu C, Xu J, Gu X, Tian B, Wang S. Science, 2024, 386: 431

[52]

Shafique H, de Vries J, Strauss J, Khorrami Jahromi A, Siavash Moakhar R, Mahshid S. Adv. Healthc. Mater., 2023, 12: 2201501

[53]

Chang Z, Wang B, Ren Q, Nie J, Guo B, Lu Y, Lu X, Zhang Y, Ji D, Lv Y, Rotenberg M Y, Fang Y. Adv. Sci., 2024, 11: 2401982.

[54]

Gao N, Pan C. SmartMat, 2023, 5: e1215.

[55]

Arthur J N, Burns S, Cole C M, Barthelme Q T, Yambem S D. J. Mater. Chem. C, 2022, 10: 13964

[56]

Zhang Q, Leonardi F, Pfattner R, Mas-Torrent M. Adv. Mater. Interfaces, 2019, 6: 1900719.

[57]

Xu T, Ren H, Fang Y, Liang K, Zhang H, Li D, Chen Y, Zhu B, Wang H. Appl. Mater. Today, 2023, 30: 101713.

[58]

Haneef H F, Zeidell A M, Jurchescu O D. J. Mater. Chem. C, 2020, 8: 759

[59]

Ullah A, Kim D Y, Lim S I, Lim H R. Gels, 2025, 11: 232

[60]

Hu J, Lu M J, Chen F Z, Jia H M, Zhou H, Li K, Zeng X, Zhao W W, Lin P. Adv. Funct. Mater., 2022, 32: 2109046

[61]

Rivnay J, Inal S, Salleo A, Owens R M, Berggren M, Malliaras G G. Nat. Rev. Mater., 2018, 3: 1.

[62]

Proctor C M, Rivnay J, Malliaras G G. J. Polym. Sci. Pol. Phys., 2016, 54: 1433

[63]

Someya T, Bao Z, Malliaras G G. Nature, 2016, 540: 379

[64]

Wang Y, Zhu C, Pfattner R, Yan H, Jin L, Chen S, Molina-Lopez F, Lissel F, Liu J, Rabiah N I. Sci. Adv., 2017, 3: e1602076

[65]

Wu X, Chen S, Moser M, Moudgil A, Griggs S, Marks A, Li T, McCulloch I, Leong W L. Adv. Funct. Mater., 2022, 33: 2209354.

[66]

Han S, Yu S, Hu S, Liang X, Luo Y, Liu C. Org. Electron., 2022, 108: 106605

[67]

Nketia-Yawson B, Tabi G D, Noh Y-Y. Org. Electron., 2018, 52: 257

[68]

Hong K, Kim S H, Mahajan A, Frisbie C D. ACS Appl. Mater. Interfaces, 2014, 6: 18704

[69]

Torres-Moya I. Appl. Sci., 2024, 14: 8454

[70]

Wang Z, Ma Y, Guo S, Yuan L, Hu Y, Huang Y, Chen X, Ji D, Bi J, Lei Y, Han C, Li L, Hu W. Small, 2023, 19: 2304634

[71]

Hu L, Chee P L, Sugiarto S, Yu Y, Shi C, Yan R, Yao Z, Shi X, Zhi J, Kai D, Yu H D, Huang W. Adv. Mater., 2023, 35: e2205326

[72]

Guo Y, Bae J, Fang Z, Li P, Zhao F, Yu G. Chem. Rev., 2020, 120: 7642

[73]

Nah S H, Lee Y, Yu K H, Chi Y, Lee H, Chen B, Patel M, Wang K, Yang S. Adv. Funct. Mater., 2023, 34: 2313881.

[74]

Zou W, Ji M, Han C, Tian E, Mo J. Energy Convers. Manage., 2024, 306: 118328

[75]

Chirani N, Yahia L, Gritsch L, Motta F L, Chirani S, Farè S. J. Biomed. Sci., 2015, 4: 1

[76]

Sun W, Xu Z, Qiao C, Lv B, Gai L, Ji X, Jiang H, Liu L. Adv. Sci., 2022, 9: 2201679

[77]

Ohayon D, Druet V, Inal S. Chem. Soc. Rev., 2023, 52: 1001

[78]

Yu S, Ratcliff E L. ACS Appl. Mater. Interfaces, 2021, 13: 50176

[79]

Zhao C, Yang J, Ma W. Nano-Micro Lett., 2024, 16: 233

[80]

Bhunia R, Boahen E K, Kim D J, Oh H, Kong Z, Kim D H. J. Mater. Chem. C, 2023, 11: 7485

[81]

Sophocleous M, Contat-Rodrigo L, Garcia-Breijo E, Georgiou J. IEEE Sens. J., 2021, 21: 3977

[82]

Minami T. J. Inclusion Phenom. Macrocyclic Chem., 2021, 101: 1

[83]

Huang X, Zhang L. Chem. Eng. J., 2024, 484: 149631

[84]

Torricelli F, Alessandri I, Macchia E, Vassalini I, Maddaloni M, Torsi L. Adv. Mater. Technol., 2021, 7: 2100445.

[85]

Zhang D, Chen H, Zhang Y, Yang J, Chen Q, Wu J, Liu Y, Zhao C, Tang Y, Zheng J. Chem. Soc. Rev., 2025, 54: 5292

[86]

Arthur J N, Cole C M, Pandey A K, Yambem S D. J. Mater. Chem. C, 2021, 9: 8169

[87]

Calafel M I, Criado-Gonzalez M, Aguirresarobe R, Fernández M, Mijangos C. Mater. Adv., 2025, 6: 4566

[88]

Ho M, Ramirez A B, Akbarnia N, Croiset E, Prince E, Fuller G G, Kamkar M. Adv. Funct. Mater., 2025, 35: 2415507

[89]

Wu Y, Zhang Y, Yan M, Hu G, Li Z, He W, Wang X, Abulimit A, Li R. Appl. Mater. Today, 2024, 36: 102036.

[90]

Wang W, Liu J, Li H, Zhao Y, Wan R, Wang Q, Xu J, Lu B. Adv. Sci., 2025, 12: 2414834

[91]

Wen J, Zhou L, Ye T. SmartMat, 2024, 5: e1253

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

8

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/