PDF
Abstract
Metal-organic small-molecule electrocatalysts, owing to their well-defined structures, tunable electronic properties, and traceable reaction mechanisms, have emerged as a pivotal platform bridging homogeneous molecular chemistry and solidstate catalytic materials. This review systematically summarizes recent advances in their applications to key electrochemical reactions, including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and carbon dioxide reduction reaction (CO2RR). Particular emphasis is placed on the differentiated roles of N-, O-, S-, and P-containing functional groups in modulating electronic structures and reaction pathways, as well as their complementary advantages in activity, stability, and selectivity. In addition, key synthetic strategies, including substituent modification, metal doping, bimetallic cooperation, and interfacial engineering are highlighted. The complementing strategies are operando spectroscopic techniques and theoretical modeling, which offer vital insights for identifying real active sites and clarifying catalytic mechanisms. Thereby, the integration of molecular design, in situ characterization, and multiscale synergy is expected to accelerate the practical deployment of these catalysts in clean energy conversion and carbon cycle utilization.
Keywords
Metal-organic small molecule
/
Electrocatalysis
/
Functional group modulation
/
Operando characterization
/
Clean energy
Cite this article
Download citation ▾
Yingli Ren, Shengli Zhu, Zhenduo Cui, Zhaoyang Li, Shuilin Wu, Wence Xu, Zhonghui Gao, Yanqin Liang, Hui Jiang.
Rational Insights into Metal-Organic Molecular Electrocatalysts: Functional Groups, Synthesis Strategies, and Emerging Applications.
Chemical Research in Chinese Universities, 2025, 41(6): 1314-1333 DOI:10.1007/s40242-025-5212-8
| [1] |
Chen J, Arce-Ramos J M, Katsounaros I, de Smit E, Abubakar S M, Lum Y, Zhang J, Wang L. SmartMat, 2025, 6: e70010
|
| [2] |
Jiang H, Zhu S, Cui Z, Li Z, Liang Y, Zhu J, Hu P, Zhang H-L, Hu W. Chem. Soc. Rev., 2022, 51: 3071
|
| [3] |
Dresselhaus M S, Thomas I L. Nature, 2001, 414: 332
|
| [4] |
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Science, 2017, 355: 4998.
|
| [5] |
Han L, Han B, Gao X, Zhong Y, Wang S, Song S, Wang Z, Zhang Y, Kuang Y, Sun X. SmartMat, 2022, 3: e1082
|
| [6] |
Fickenscher Z, Hey-Hawkins E. Molecules, 2023, 28: 4233
|
| [7] |
Makhsoos A, Kandidayeni M, Pollet B G, Soroush M, Mohammadi M. Int. J. Hydrogen Energy, 2023, 48: 15341
|
| [8] |
Sun Z, Yin H, Liu K, Cheng S, Li G K, Kawi S, Zhao H, Jia G, Yin Z. SmartMat, 2022, 2: e1107
|
| [9] |
Torres-Méndez C, Axelsson M, Tian H. Angew. Chem. Int. Ed., 2023, 62: e202312879
|
| [10] |
Kaeffer N, Leitner W. JACS Au, 2022, 2: 1266
|
| [11] |
Gotico P, Halime Z, Leibl W, Aukauloo A. ChemPlusChem, 2023, 88: e202300222
|
| [12] |
Zhang B, Sun L. Chem. Soc. Rev., 2019, 48: 2216
|
| [13] |
Navarro M, Moreno J J, Pérez-Jiménez M, Campos J. Chem. Commun., 2022, 58: 11220
|
| [14] |
Yari F, Aljabour A, Awada H, Michalke J, Kumari N, Coskun-Aljabour H, Roy S, Krisch D, Schöfberger W. ACS Appl. Energy Mater., 2024, 7: 14566.
|
| [15] |
Jiang H, Ye J, Hu P, Zhu S, Liang Y, Cui Z, Kloc C, Hu W. Mater. Horiz., 2022, 9: 1057
|
| [16] |
Wang J, Dou S, Wang X. Sci. Adv., 2021, 7: eabf3989
|
| [17] |
Lu Y, Chen M, Wang Y, Yang C, Zou Y, Wang S. Chem, 2024, 10: 1371
|
| [18] |
Pang C, Xu W, Liang Y, Li Z, Wu S, Cui Z, Sun H, Jiang H, Zhu S. J. Colloid Interface Sci., 2024, 656: 262
|
| [19] |
Costentin C, Savéant J-M. Curr. Opin. Electrochem., 2019, 15: 58
|
| [20] |
Liang Z, Wang H Y, Zheng H, Chen Y, Zhao J, Wang C. Chem. Soc. Rev., 2021, 50: 2540
|
| [21] |
Gao Y, Zhu S, Cui Z, Li Z, Wu S, Gao Z, Xu W, Guo M, Liang Y, Jiang H. Sustainable Energy Fuels, 2024, 8: 1936
|
| [22] |
Xiao L, Zhu S, Liang Y, Li Z, Wu S, Luo S, Chang C, Cui Z. ACS Appl. Mater. Interfaces, 2021, 13: 30722
|
| [23] |
Hong W, Deng Y, Zhu S, Cui Z, Li Z, Wu S, Xu W, Gao Z, Ba T, Liang Y, Jiang H. Cryst. Growth Des., 2025, 25: 1653
|
| [24] |
Zhang Z, Gao Z, Liang Y, Jiang H, Li Z, Cui Z, Liu E, Zhu S, Xu W. Phys. Chem. Chem. Phys., 2025, 27: 21886
|
| [25] |
Jiang H, Hu W. Angew. Chem. Int. Ed., 2020, 59: 1408
|
| [26] |
Yang W, Han P, Zhu S, Cui Z, Li Z, Wu S, Xu W, Gao Z, Ba T, Liang Y, Jiang H, Hu W. ACS Appl. Electron. Mater., 2024, 6: 4223
|
| [27] |
Zagal J H, Griveau S, Silva J F, Nyokong T, Bedioui F. Coord. Chem. Rev., 2010, 254: 2755
|
| [28] |
Costentin C, Robert M, Savéant J-M. Acc. Chem. Res., 2015, 48: 2996
|
| [29] |
Surendran A K, Pereverzev A Y, Roithová J. J. Am. Chem. Soc., 2024, 146: 13025.
|
| [30] |
Sampson M D, Kubiak C P. J. Am. Chem. Soc., 2016, 138: 1386
|
| [31] |
Silva C P, Candia C P, Paredes M, Rojas E, Bedioui F, Zagal J H. J. Catal., 2024, 430: 115365
|
| [32] |
Fan W, Duan Z, Liu W, Chen Y, Liu T, Li Y, Wang J. Nat. Commun., 2023, 14: 1426
|
| [33] |
Chen Y T, Hua X, Chen S L. Chin. J. Catal., 2016, 37: 1166
|
| [34] |
Liu X H, Hu W L, Jiang W J, Luo W J, Huang J Q, Zhang Q. ACS Appl. Mater. Interfaces, 2017, 9: 27736
|
| [35] |
Liu X, Zhuo M, Zhang W, Song C, Liu J, Wang W. Ultrason. Sonochem., 2020, 67: 105179
|
| [36] |
Sarapuu A, Helstein K, Vaik K, Tammeveski K. Electrochim. Acta, 2010, 55: 6376
|
| [37] |
Preger Y, Gerken J B, Biswas S, Johnson R J, Whitehead G F S, Root T W, Stahl S S. Joule, 2018, 2: 2722
|
| [38] |
Xing G, Cheng L, Li K, Zhu H, Liu C, Chen L, Yang W. Appl. Surf. Sci., 2021, 550: 149389
|
| [39] |
Abdinejad M, Massen-Hane M, Seo H, Hatton T A. Angew. Chem. Int. Ed., 2024, 63: e202412229
|
| [40] |
Wu B, Aspers R L E G, Kentgens A P M, Zhao E W. J. Magn. Reson., 2023, 351: 107448
|
| [41] |
Bui A T, Hartley N A, Thom A J W, Forse A C. J. Phys. Chem. C, 2022, 126: 14163
|
| [42] |
Fogeron T, Retailleau P, Gomez-Mingot M, Chamoreau L M, Duboc C, Derat E, Artero V. Organometallics, 2018, 37: 3867
|
| [43] |
Zhang Z, Yang T, Qin P, Li S, Luo X, Wang H. J. Organomet. Chem., 2018, 864: 143
|
| [44] |
Khakre Y, Marinescu S C. Coord. Chem. Rev., 2025, 535: 216586
|
| [45] |
Gross M A, Reynal A, Durrant J R, Reisner E. J. Am. Chem. Soc., 2013, 135: 2937.
|
| [46] |
Cycpar A D, Bui K, Yang J Y. ACS Catal., 2024, 14: 12290
|
| [47] |
Yang J Y, Smith S E, Liu T, Dougherty W G, Hoffert W A, Kassel W S, DuBois M R, DuBois D L, Bullock R M. Science, 2011, 334: 1069.
|
| [48] |
Katipamula S, Cook A W, Niedzwiecki I, Emge T J, Waldie K M. Inorg. Chem., 2023, 62: 12684
|
| [49] |
Helm M L, Stewart M P, Bullock R M, DuBois M R, DuBois D L. Science, 2011, 333: 863
|
| [50] |
O’Hagan M, Shaw W J, Raugei S, Chen S, Yang J Y, Kilgore U J, DuBois D L, Bullock R M. J. Am. Chem. Soc., 2011, 133: 14301
|
| [51] |
Ngo K T, McKinnon M, Mahanti B, Narayanan R, Grills D C, Ertem M Z, Rochford J. J. Am. Chem. Soc., 2017, 139: 2604
|
| [52] |
Costentin C, Robert M, Savéant J-M. Proc. Natl. Acad. Sci. USA, 2015, 112: 6882
|
| [53] |
Lv H, Zhang X P, Guo K, Wang H, Zhang J, Wang B, Zhang J. Angew. Chem. Int. Ed., 2023, 62: e202305938
|
| [54] |
Costentin C, Robert M, Savéant J-M. Acc. Chem. Res., 2015, 48: 2996
|
| [55] |
Xiao Y, Xie F, Zhang H T, Li J, Wang Y, Xu J. JACS Au, 2024, 4: 3085
|
| [56] |
Mouchfiq A, Todorova T K, Dey S, Fontecave M, Mougel V. Chem. Sci., 2020, 11: 10373.
|
| [57] |
Xiao Y, Zhang H T, Zhang M T. J. Am. Chem. Soc., 2024, 146: 28832
|
| [58] |
Hu X M, Rønne M H, Pedersen S U, Skrydstrup T, Daasbjerg K. Angew. Chem. Int. Ed., 2017, 56: 6468
|
| [59] |
Zhang X, Wu Z, Zhang X, Li L, Li Y, Xu H, Yu X, Zhang Y, Liang Y, Wang H. Nat. Commun., 2017, 8: 14675
|
| [60] |
Das A K, Engelhard M H, Bullock R M. Inorg. Chem., 2014, 53: 4872.
|
| [61] |
Sung S, Kumar D, Gil-Sepulcre M, Neri G, Walsh J J, Orozco-Gonzalez Y, Hammarström L, Bonin J, Robert M. J. Am. Chem. Soc., 2017, 139: 13993
|
| [62] |
Derrick J S, Loipersberger M, Nistanaki S K, Lee J, Roy S, Mercado B Q, Batista V S, Miller A J M. J. Am. Chem. Soc., 2022, 144: 10932.
|
| [63] |
Cruz K E R, Liu Y, Soucy T L, Paul M, Zimmerman P M, McCrory C. ACS Catal., 2020, 10: 1952
|
| [64] |
Zhang X, Wu Z, Zhang X, Li L, Li Y, Xu H, Yu X, Liang Y, Wang H. Nat. Commun., 2019, 10: 14675
|
| [65] |
Wang M, Torbensen K, Salvatore D, Ren S, Joulié D, Dumoulin F, Mendoza D, Lassalle-Kaiser B, Işci U, Berlinguette C P. Nat. Commun., 2019, 10: 3602
|
| [66] |
Lu X, Ahsaine H A, Dereli B, Li J, Wu Y, Zhang J, Wang M, Zhang H. ACS Catal., 2021, 11: 8648
|
| [67] |
Salamé A, Cheah M H, Bonin J, Robert M. Angew. Chem. Int. Ed., 2024, 63: e202412417.
|
| [68] |
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Science, 2017, 355: 4998.
|
| [69] |
Kornienko N, Zhao Y, Kley C S, Zhu C, Kim D, Lin S, Chang C J, Yaghi O M, Yang P. J. Am. Chem. Soc., 2015, 137: 14129
|
| [70] |
Wu M, Yang S, Gao Y, Zhang Z, Liu W, Wang J, Chen Y, Xu H. ACS Nano, 2025, 19: 4123
|
| [71] |
Bai Q, Li P, Zhang L, Zhou X, Wang J. J. Mater. Chem. A, 2025, 13: 7500
|
| [72] |
Yang G, Zhu J, Yuan P, Hu Y, Zhang J, Wu Z, Wang X, Wang H. Nat. Commun., 2021, 12: 1734
|
| [73] |
Takase S, Aritsu T, Kamikawa Y, Yamamoto M, Kinoshita K, Matsui H. Bull. Chem. Soc. Jpn., 2025, 98: 1205
|
RIGHTS & PERMISSIONS
Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH