PDF
Abstract
Ternary transition metal oxide cathode materials have been widely utilized in high-performance power applications due to their high energy density. However, their poor thermal stability and limited cycle life pose significant challenges to broader commercialization. To address these issues, a surface modification strategy was developed by coating the cathode materials with the fast ionic conductor Li1.3Al0.3Ti1.7(PO4)3 (LATP). The LATP-coated cathode materials are synthesized via a kilogram-scale process, enabling large-scale and cost-effective manufacturing. The LATP-coated cathodes demonstrate enhanced reaction kinetics, thermal decomposition temperatures, and surface stability, leading to higher reversible capacity, rate performance, and cycling stability. Furthermore, 60 A·h pouch cells are fabricated with the coated cathodes and demonstrate exceptional cycling performance, retaining 96.2% of their capacity after 700 cycles at 1 C, and maintaining high capacity at 3 C. This work offers a scalable and effective strategy for advancing high-performance ternary cathode materials, accelerating their deployment in nextgeneration power battery systems.
Keywords
Ternary cathode material
/
Solid electrolyte
/
Li1.3Al0.3Ti1.7(PO4)3 (LATP)
/
Surface coating
/
Power battery
Cite this article
Download citation ▾
Changbin Cai, Zehui Fan, Yunhua Xu.
Li1.3Al0.3Ti1.7(PO4)3-coated Ternary Cathode Materials for High Performance Lithium-ion Batteries.
Chemical Research in Chinese Universities, 2025, 41(6): 1620-1627 DOI:10.1007/s40242-025-5209-3
| [1] |
Scrosati B, Garche J. J. Power Sources, 2010, 195: 2419
|
| [2] |
Cook T R, Dogutan D K, Reece S Y, Surendranath Y, Teets T S, Nocera D G. Chem. Rev., 2010, 110: 6474
|
| [3] |
Thoi V S, Sun Y, Long J R, Chang C J. Chem. Soc. Rev., 2013, 42: 2388
|
| [4] |
Su H, Chen Z, Li M, Bai P, Li Y, Ji X, Liu Z, Sun J, Ding J, Yang M, Yao X, Mao C, Xu Y. Adv. Mater., 2023, 35: 2301171
|
| [5] |
Peng X, Li T, Zhong L, Lu J. SmartMat, 2021, 2: 123.
|
| [6] |
Nitta N, Wu F, Lee J T, Yushin G. Materials Today, 2015, 18: 252
|
| [7] |
Kundu D, Adams B D, Duffort V, Vajargah S H, Nazar L F. Nature Energy, 2016, 1: 16119
|
| [8] |
Guo H, Hou Y, Wang X, Yang Z, Tian Q, Dong Q, Li J, Huang H, Zhang W, Qin H, Liu J, Shi B, Han X, Hu W. Adv. Mater., 2025, 37: 2503618
|
| [9] |
Liu H, Cheng X, Chong Y, Yuan H, Huang J-Q, Zhang Q. Particuology, 2021, 57: 56
|
| [10] |
Choi J W, Aurbach D. Nat. Rev. Mater., 2016, 1: 16013
|
| [11] |
Liang J, Luo J, Sun Q, Yang X, Li R, Sun X. Energy Storage Materials, 2019, 21: 308.
|
| [12] |
Luo J, Zhang J, Guo Z, Liu Z, Wang C, Jiang H, Zhang J, Fan L, Zhu H, Xu Y, Liu R, Ding J, Chen Y, Hu W. Adv. Mater., 2024, 36: 2405956
|
| [13] |
Zhao F W, Zhao B J. Applied Mechanics & Materials, 2015, 740: 985.
|
| [14] |
Yang S T, Zhao N H, Dong H Y, Yang J X, Yue H Y. Electrochim. Acta, 2006, 51: 166.
|
| [15] |
Zhu W, Zhang J, Luo J, Zeng C, Su H, Zhang J, Liu R, Hu E, Liu Y, Liu W-D, Chen Y, Hu W, Xu Y. Adv. Mater., 2023, 35: 2208974
|
| [16] |
Zhu W, Zhao J, Yang M, Zhan J, Su H, Zeng C, Li Z, Zhang J, Chen Y, Xu Y. J. Mater. Chem., A: Materials for Energy and Sustainability, 2024, 12: 9
|
| [17] |
Peng X, Xiong C, Lin Y, Zhao C, Zhao T. SmartMat, 2021, 2: 579
|
| [18] |
Wang L, Li S L, Li N, Song W L. Chinese Physics B, 2025, 34: 66103
|
| [19] |
Chang L, Wei A, Luo S. International J. Energy Research, 2022, 46: 23145
|
| [20] |
Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997, 144: 1188
|
| [21] |
Yang X G, Liu T, Wang C Y. Nature Energy, 2021, 6: 176
|
| [22] |
Preger Y, Barkholtz H M, Fresquez A, Campbell D L, Juba B W, Romàn-Kustas J, Ferreira S R, Chalamala B. J. Electrochem. Soc., 2020, 167: 1.
|
| [23] |
Liu Z, Yu A, Lee J Y. J. Power Sources, 1999, 81/82: 416.
|
| [24] |
Ito A, Shoda K, Sato Y, Hatano M, Horie H, Ohsawa Y. J. Power Sources, 2011, 196: 4785
|
| [25] |
Vu D L, Lee J W. J. Solid State Electrochem., 2017, 22: 1165.
|
| [26] |
Riley L A, Atta S V, Cavanagh A S, Yan Y, George S M, Liu P, Dillon A C, Lee S H. J. Power Sources, 2011, 196: 3317
|
| [27] |
Hu S, Pillai A S, Liang G, Pang W K, Wang H, Li Q, Guo Z. Electrochem. Energy Rev., 2019, 2: 277
|
| [28] |
Kim J M, Chung H T. Electrochimica Acta, 2004, 49: 3573
|
| [29] |
Li T, Yuan X-Z, Zhang L, Song D, Shi K, Bock C. Electrochem. Energy Rev., 2019, 3: 43.
|
| [30] |
Sun Y F, Gong X G, Yang J H. Chin. Phys. Lett., 2024, 41: 108201
|
| [31] |
Zhang M, Zhao H, Tan M, Liu J, Hu Y, Liu S, Shu X, Li H, Ran Q, Cai J. J. Alloys & Compounds, 2019, 774: 82
|
| [32] |
Yu H, Cao Y, Chen L, Hu Y, Jiang H. Nat. Commun., 2021, 12: 45.
|
| [33] |
Zheng R K, Wang Y, Chan H L W, Choy C L, Luo H S. Phys. Rev.B, 2007, 75: 1
|
| [34] |
Mandal S, Rojas R M, Amarilla J M, Calle P, Kosova N V, Anufrienko V F, Rojo J M. Chem. Mater., 2002, 14: 1598
|
| [35] |
Bellitto C, Bauer E M, Righini G, Green M A, Branford W R, Antonini A, Pasquali M. J. Phys. Chem. Solids, 2004, 65: 29
|
| [36] |
Wei Y J, Yan L Y, Wang C Z, Xu X G, Wu F, Chen G. J. Phys. Chem. B, 2004, 108: 18547
|
| [37] |
Xiao L, Yang Y, Zhao Y, Ai X, Yang H, Cao Y. J. Solid State Electrochem., 2008, 12: 149
|
| [38] |
Thirunakaran R, Sivashanmugam A, Gopukumar S, Rajalakshmi R. J. Power Sources, 2009, 187: 565
|
| [39] |
Wang T, Yuan M, Xie S, Liu J, Yan J, Li Z, Peng J. Ceramics International, 2022, 48: 20605
|
| [40] |
Zhao Z, Luo D, Wu S, Sun K, Lin Z, Li H-F. J. Energy Storage, 2024, 98: 1
|
| [41] |
Ma L, Chen Z, An Y, Pang C, Liang F, Wang S, Wang X, Wang S, Wang S. New J. Chemistry, 2025, 49: 9918
|
| [42] |
Zhao X, Yang M, Wang J, Wang D. Chem. Res. Chinese Universities, 2023, 39: 630
|
| [43] |
Qian H, Ren H, Zhang Y, He X, Li W, Wang J, Hu J, Yang H, Sari H M K, Chen Y, Li X. Electrochem. Energy Rev., 2022, 5: 2
|
| [44] |
Li J, Liu M, An J, Tian P, Feng X. J. Alloys and Compounds, 2020, 829: 154555
|
| [45] |
Kimura N, Seki E, Tooyama T, Nishimura S. J. Alloys and Compounds, 2021, 869: 159259
|
| [46] |
Shim J H, Lee S, Park S S. Chemistry of Materials: A Publication of the American Chemistry Society, 2014, 26: 2537
|
| [47] |
Kannan A M, Rabenberg L, Manthiram A. Electrochem. Solid-state Lett., 2003, 6: A16
|
| [48] |
Gan Q, Qin N, Wang Z, Li Z, Zhu Y, Li Y, Gu S, Yuan H, Luo W, Lu L, Xu Z, Lu Z. ACS Applied Energy Materials, 2020, 3: 7445
|
| [49] |
Guan P, Min J, Zhang S, Lu Y, Liang T, Meng L, Yuan Y, Zhou Y, Chen F, Zhou L, Feng Z, Liu C, Hu Y, Li Z, Wan T, Liu Y, Hart J N, Chu D. ACS Applied Materials & Interfaces, 2024, 16: 26167
|
| [50] |
Han Y, Wang G-R, Ren X-X, Yang M-Z, Li Z-T, Wu Z-S. New Carbon Materials, 2025, 40: 597.
|
| [51] |
Wang J, Zhao N, Guo X. Chinese Phys. Lett., 2024, 41: 078201
|
| [52] |
Liu X, Wang S, Wang L, Wang K, Wu X, Zhou P, Miao Z, Zhou J, Zhao Y, Zhuo S. J. Power Sources, 2019, 438: 1
|
| [53] |
Wang M, Lv S, Li M, Li X, Li C, Li Z, Chen X, Wu J, Li X, Chen Y, Chen Q. Adv. Fiber Mater., 2024, 6: 727
|
| [54] |
Li M, Wang C, Davey K, Li J, Li G, Zhang S, Mao J, Guo Z. SmartMat, 2023, 4: e1185
|
RIGHTS & PERMISSIONS
Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH