Stretchable Polymer Solar Cells Beyond 15% Efficiency: Strategies, Achievements, and Outlook
Shuiwang Lv , Huizhen Ke , Wenchao Zhao , Long Ye
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (6) : 1261 -1277.
Stretchable Polymer Solar Cells Beyond 15% Efficiency: Strategies, Achievements, and Outlook
Stretchable polymer solar cells (S-PSCs) have recently achieved a landmark efficiency exceeding 15%, marking a critical step toward their integration into next-generation wearable, portable, and conformable energy systems. This review highlights the key strategies that enabled this breakthrough, including molecular design of stretchable photovoltaic polymers, rubber-toughening approaches to stabilize microstructures under strain, and the development of multifunctional interlayers and eletrodes that balance mechanical resilience with electronic performance. We summarize the major achievements that have propelled S-PSCs from early proof-of-concept devices with modest efficiency to state-of-the-art systems rivaling their rigid counterparts. Beyond the efficiency milestone, we discuss the unique advantages of S-PSCs, such as their ability to offer power output gains under extreme deformation, which is essential for advanced deployments. This strain-induced power output enhancement mechanism provides new pathways for high-performance wearable devices. Finally, we provide an outlook on emerging trends, remaining challenges, and application scenarios, underscoring the opportunities for S-PSCs to play a pivotal role in the future of flexible and wearable optoelectronics.
Stretchable polymer solar cell (S-PSC) / Molecular design / Physical toughening / Device optimization / Power output
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
Sun B., Li X., Zhao W. C., Zhang K., Li S. M., Sun C. L., Kuvondikov V., Nematov S., Lv M. L., Ye L., Adv. Funct. Mater., 2025, https://doi.org/10.1002/adfm.202512584. |
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
Luo M., Zhao S. Y., Kong L. C., Wu J. F., Chen M. Q., Zhang Z. S., Liu X. C., Dou P., Li M. K., Ying L., Jiang M. T., Qin Z. D., Jia G. K., Chen J. W., Adv. Funct. Mater., 2025, https://doi.org/10.1002/adfm.202511193. |
| [89] |
Yu M. Q., Gao M. Y., Sun C. L., Wu J. J., Zhang K., Feng J. T., Ye L., Adv. Funct. Mater., 2025, https://doi.org/10.1002/adfm.202516999. |
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
Pei L. X., Han D. X., Wang Y. X., Gao M. Y., Wu J. J., Sun C. L., Yu M. Q., Wang Y. X., Ke H. Z., Li X., Ye L., Adv. Funct. Mater., 2025, 2425892. |
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
Qian F., Han Y. F., Chen Z., Wang Z. G., Zhang L. P., Ma C. Q., Luo Q., Adv. Funct. Mater., 2025, https://doi.org/10.1002/adfm.202506783. |
| [127] |
Zhang Y. D., Peng P., Xu Y., Wang J. J., Xiao B., Kuvondikov V., Nematov S., Ye L., Liu J. W., Chin. J. Chem., 2025, https://doi.org/10.1002/cjoc.70311. |
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
| [146] |
|
| [147] |
|
| [148] |
|
| [149] |
|
| [150] |
|
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
|
| [156] |
|
| [157] |
|
| [158] |
|
| [159] |
|
| [160] |
|
| [161] |
Wu J. J., Gao M. Y., Wang J. J., Li S. M., Zhang K., Zhao W. C., Li S. S., Kuvondikov V., Yin H., Ye L., Appl. Phys. Lett., 2024, 124 |
| [162] |
|
| [163] |
|
| [164] |
|
| [165] |
|
| [166] |
|
| [167] |
|
| [168] |
|
| [169] |
|
Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH
/
| 〈 |
|
〉 |