Crystal Packing Factor-guided Design of Stress-resistant Alloying-type Anodes for Durable Sodium-ion Storage

Zhuoran Lv , Ximeng Lv , Wujie Dong , Fuqiang Huang

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1092 -1099.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1092 -1099. DOI: 10.1007/s40242-025-5184-8
Article
research-article

Crystal Packing Factor-guided Design of Stress-resistant Alloying-type Anodes for Durable Sodium-ion Storage

Author information +
History +
PDF

Abstract

Alloying-type anodes hold promise for sodium-ion batteries (SIBs) due to their high theoretical capacities, yet they suffer from severe capacity fading caused by large volume expansion during sodiation. Identifying a universal structural descriptor that links lattice chemistry with stress resistance and ion transport is therefore critical. Here, we introduce the crystal packing factor (PF) as a predictive metric and validate its effectiveness in layered bismuth compounds (BiOCl, Bi2O2S, and Bi2O2NCN) spanning a broad PF range. Bi2O2NCN, characterized by an atomically sparse and electronically conjugated [Bi2O2]2+-NCN2− layered framework with the lowest PF (0.613), markedly outperforms Bi2O2S (0.694) and BiOCl (0.763). Its open framework provides abundant interlayer free volume and weak steric constraints, thereby buffering mechanical strain and accelerating Na+ diffusion. First-principles calculations corroborate that Bi2O2NCN shows suppressed stress accumulation and a lower migration barrier of 0.18 eV compared to Bi2O2S and BiOCl. Experimentally, Bi2O2NCN delivers a high capacity of 486 mA·h·g−1 at 0.3 C (1 C=656 mA·g−1) and maintains 230 mA·h·g−1 after 6600 cycles at 15 C with 93% capacity retention. Multimodal structural characterizations further confirm a reversible conversion-alloying mechanism. These findings establish the crystal PF as a generalizable guideline for designing stress-resistant alloying-type anodes, offering a powerful pathway toward durable, high-performance SIBs.

Keywords

Crystal packing factor / Stress resistance / Bismuth oxide carbodiimide / Anode material / Sodium ion battery

Cite this article

Download citation ▾
Zhuoran Lv, Ximeng Lv, Wujie Dong, Fuqiang Huang. Crystal Packing Factor-guided Design of Stress-resistant Alloying-type Anodes for Durable Sodium-ion Storage. Chemical Research in Chinese Universities, 2025, 41(5): 1092-1099 DOI:10.1007/s40242-025-5184-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DunnB, KamathH, TarasconJ-MScience, 2011, 334928.

[2]

SunS, WangK, HongZ, ZhiM, ZhangK, XuJNano-Micro Lett., 2023, 1635.

[3]

UsiskinR, LuY, PopovicJ, LawM, BalayaP, HuY-S, MaierJNat. Rev. Mater., 2021, 61020.

[4]

RudolaA, SayersR, WrightC J, BarkerJNat. Energy, 2023, 8215.

[5]

HwangJ-Y, MyungS-T, SunY-KChem. Soc. Rev., 2017, 463529.

[6]

DuffnerF, KronemeyerN, TuebkeJ, LekerJ, WinterM, SchmuchRNat. Energy, 2021, 6123.

[7]

Li Q., Zhang H., Xu J., Chin. Sci. Bull., 2025, https://doi.org/10.1360/CSB-2025-0404.

[8]

QianH, LiuY, ChenH, FengK, JiaK, PanK, WangG, HuangT, PangX, ZhangQEnergy Storage Mater., 2023, 58232.

[9]

WangA, HongW, YangL, TianY, QiuX, ZouG, HouH, JiXSmall, 2020, 162004022.

[10]

LvZ, XuH, XuW, PengB, ZhaoC, XieM, LvX, GaoY, HuK, FangY, DongW, HuangFAdv. Energy Mater., 2023, 132300790.

[11]

LvZ, PengB, LvX, GaoY, HuK, DongW, ZhengG, HuangFAdv. Funct. Mater., 2023, 332214370.

[12]

WuZ, LiangG, WuJ, PangW K, YangF, ChenL, JohannessenB, GuoZAdv. Energy Mater., 2021, 112100185.

[13]

SunJ, TuW, ChenC, PlewaA, YeH, Sam OhJ A, HeL, WuT, ZengK, LuLChem. Mater., 2019, 317311.

[14]

DuttaP K, MyungY, VenkiteswaranR K, MehdiL, BrowningN, BanerjeeP, MitraSThe Journal of Physical Chemistry C, 2019, 12311500.

[15]

HaoG, ZhangC, ChenZ, XuYAdv. Funct. Mater., 2022, 322201352.

[16]

FangS-J, DuP, ZhangJ-F, WangC-H, XiaoZ-M, ZhangB, CaoL, FanX-M, OuXRare Met., 2022, 412567.

[17]

Mo F., Liu Z., Li H., Adv. Funct. Mater., 2025, n/a, e13591.

[18]

ZhangK-L, LiuC-M, HuangF-Q, ZhengC, WangW-DAppl. Catal. B, 2006, 68125.

[19]

DongW, HuangFeScience, 2024, 4100158.

[20]

ShannonR DActa Crystallographica Section A, 1976, 32751.

[21]

LinX, HuangF, WangW, WangY, XiaY, ShiJAppl. Catal. A, 2006, 313218.

[22]

ZhengL, XuY, JinD, XieYChem. Mater., 2009, 215681.

[23]

KongS, LvX, WangX, LiuZ, LiZ, JiaB, SunD, YangC, LiuL, GuanA, WangJ, ZhengG, HuangFNat. Catal., 2023, 66.

[24]

Liao H., Tang Y., Ma W., Liu Y., Dong Y., Huang F., Nat. Energy, 2025, https://doi.org/10.1038/s41560-025-01831-8.

[25]

LvC, LinC, ZhaoX SeScience, 2023, 3100179.

[26]

DongW, LiuZ, XieM, ChenY, MaW, LiangS, BaiY, HuangFAdv. Mater., 2024, 362311424.

[27]

LvZ, DongW, JiaB, ZhangS, XieM, ZhaoW, HuangFChem. Eur. J., 2021, 272717.

[28]

LiaoH, CaiM, MaW, CaoY, ZhaoS, DongY, HuangFAdv. Mater., 2024, 362402739.

[29]

HuK, ChenW, PanY, LiS, LvZ, HeY, ZhengC, HuangF, DongWNano Lett., 2025, 251823.

[30]

JiaB, ChenZ, LiC, LiZ, ZhouX, WangT, YangW, SunL, ZhangBJ. Am. Chem. Soc., 2023, 14514101.

[31]

SougratiM T, ArayamparambilJ J, LiuX, MannM, SlabonA, StievanoL, DronskowskiRDalton Trans., 2018, 4710827.

[32]

WangJ J, BuiH T D, WangX, LvZ, HuH, KongS, WangZ, LiuL, ChenW, BiH, YangM, BrinckT, WangJ, HuangFJ. Am. Chem. Soc., 2025, 1478012.

[33]

JiaB, SunD, ZhaoW, HuangFJ. Energy Chem., 2021, 61347.

[34]

LiQ, GaoB, ZhengX, LiuX, CuiX, ChengM, YanX, LiuH, YangH, KongW, WangZ, WuW, XuQApplied Catalysis B: Environment and Energy, 2025, 368125133.

[35]

LvZ, ZhaoC, XieM, CaiM, PengB, RenD, FangY, DongW, ZhaoW, LinT, LvX, ZhengG, HuangFAdv. Mater., 2024, 362309637.

[36]

LiuC, ZhangC, FuH, NanX, CaoGAdv. Energy Mater., 2017, 71601127.

[37]

WuZ-J, ZhaoE-J, XiangH-P, HaoX-F, LiuX-J, MengJPhysical Review B, 2007, 76054115.

[38]

FengY, XuM, HeT, ChenB, GuF, ZuL, MengR, YangJAdv. Mater., 2021, 332007262.

[39]

ChenZ, XiaoY, QiaoX, OuH, LeeC-F, WangH-T, ShaoY-C, HanLProceedings of the National Academy of Sciences, 2025, 122e2420922122.

[40]

MüllerR J, LanJ, LienauK, MoréR, TrianaC A, LannuzziM, PatzkeG RDalton Trans., 2018, 4710759.

[41]

YueK, QinY, HuangH, LvZ, CaiM, SuY, HuangF, YanYNat. Commun., 2024, 157820.

[42]

ZhuK, JiaB, ChenZ, HuZ, SunL, WangT, ZhangBAngew. Chem. Int. Ed., 2025, 64e202507422.

[43]

WangJ, BuiH T D, HuH, KongS, WangX, ZhuH, MaJ, XuJ, LiuY, LiuL, ChenW, BiH, YangM, HuangF, BrinckT, WangJAdv. Mater., 2025, 372418451.

[44]

CorkettA J, ChenZ, BogdanovskiD, SlabonA, DronskowskiRInorg. Chem., 2019, 586467.

[45]

JiaB, ZhaoW, SunD, FanL, YaoH, LuP, XuF, HuangFChem. Mater., 2019, 319532.

[46]

LongH, WangJ, ZhaoS, ZouB, YanL, HuangQ, ZhaoYAngew. Chem. Int. Ed., 2024, 63e202406513.

[47]

LuZ, YuH, WeiY, CaoC, LiangR, CaiG, JinS, JinH, NiY, LinY, JiHJ. Am. Chem. Soc., 2025, 14728714.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/