Prediction of Key Properties in Multiple Resonance Thermally Activated Delayed Fluorescence Materials Using Lightweight Feature Encoding

Yajun Yin , Lifang Yin , Yi Zhao , Qiang Gao , Yufei Yang , Tengfei He , Zihan Zhang , Jifen Wang , Tongshun Wu , Luyi Zou

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1173 -1185.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1173 -1185. DOI: 10.1007/s40242-025-5175-9
Article
research-article

Prediction of Key Properties in Multiple Resonance Thermally Activated Delayed Fluorescence Materials Using Lightweight Feature Encoding

Author information +
History +
PDF

Abstract

Multiple resonance thermally activated delayed fluorescence (MR-TADF) materials have attracted significant attention in organic electroluminescent devices due to their high exciton utilization efficiency and narrow emission spectra. However, their key performance parameters, singlet-triplet energy gap (ΔEST) and emission spectral full width at half maximum (FWHM), exhibit complex nonlinear relationships with molecular structures. To overcome the challenges of time-consuming, costly experiments and the limitations and insufficient accuracy of theoretical calculations, this study proposes a lightweight prediction framework based on SMILES encoding. By integrating Morgan fingerprints and physicochemical descriptors, end-to-end predictive models for ΔEST and FWHM were established. Skeleton similarity constraints were introduced to prevent data leakage, while feature selection and Bayesian optimization were applied to further enhancing model performance. Several machine learning algorithms were explored, among which the XGBoost model demonstrated the best predictive ability. Shapley additive explanations (SHAP) analysis revealed that ΔEST is mainly associated with electronic distribution, whereas FWHM is influenced by local skeleton structures and polar surface area. This approach achieves high-accuracy predictions without relying on three-dimensional structural information, providing an efficient solution for the rational design of MR-TADF materials.

Keywords

Multiple resonance thermally activated delayed fluorescence (MR-TADF) / Photophysical property prediction / SMILES / Shapley additive explanations (SHAP)

Cite this article

Download citation ▾
Yajun Yin, Lifang Yin, Yi Zhao, Qiang Gao, Yufei Yang, Tengfei He, Zihan Zhang, Jifen Wang, Tongshun Wu, Luyi Zou. Prediction of Key Properties in Multiple Resonance Thermally Activated Delayed Fluorescence Materials Using Lightweight Feature Encoding. Chemical Research in Chinese Universities, 2025, 41(5): 1173-1185 DOI:10.1007/s40242-025-5175-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

UoyamaH, GoushiK, ShizuK, NomuraH, AdachiCNature, 2012, 492234.

[2]

HamzeR, PeltierJ L, SylvinsonD, JungM, CardenasJ, HaigesR, SoleilhavoupM, JazzarR, DjurovichP I, BertrandG, ThompsonM EScience, 2019, 363601.

[3]

YangT, ChengZ, LiZ, LiangJ, XuY, LiC, WangYAdv. Funct. Mater., 2020, 302002681.

[4]

ZhangD, SongX, GillettA J, DrummondB H, JonesS T E, LiG, HeH, CaiM, CredgingtonD, DuanLAdv. Mater., 2020, 321908355.

[5]

CaiX, SuS JAdv. Funct. Mater., 2018, 281802558.

[6]

HiraiH, NakajimaK, NakatsukaS, ShirenK, NiJ, NomuraS, IkutaT, HatakeyamaTAngew. Chem. Int. Ed., 2015, 5413581.

[7]

HatakeyamaT, ShirenK, NakajimaK, NomuraS, NakatsukaS, KinoshitaK, NiJ, OnoY, IkutaTAdv. Mater., 2016, 282777.

[8]

JiangH, JinJ, WongW YAdv. Funct. Mater., 2023, 332306880.

[9]

KimH, LeeK, KimJ H, KimW YJ. Chem. Inf. Model., 2024, 64677.

[10]

LvC, WangX, ZhangQ, ZhangYMater. Chem. Front., 2023, 72809.

[11]

ZhangY, ZhangD, WeiJ, LiuZ, LuY, DuanLAngew. Chem. Int. Ed., 2019, 5816912.

[12]

HanJ, HuangZ, LvX, MiaoJ, QiuY, CaoX, YangCAdv. Opt. Mater., 2022, 102102092.

[13]

HuangZ, XieH, MiaoJ, WeiY, ZouY, HuaT, CaoX, YangCJ. Am. Chem. Soc., 2023, 14512550.

[14]

LowerS K, El-SayedM AChem. Rev., 1966, 66199.

[15]

WuX, SuBK, ChenD G, LiuD, WuC C, HuangZ X, LinT C, WuC H, ZhuM, LiE Y, HungW Y, ZhuW, ChouP TNat. Photonics, 2021, 15780.

[16]

HeT F, RenA M, ChenY N, HaoX L, ShenL, ZhangB H, WuT S, ZhangH X, ZouL YInorg. Chem., 2020, 5912039.

[17]

ZhaoZ K, HeT F, GaoQ, RenA M, WuT S, GuoJ F, ChuH Y, SuZ M, LiH, ZouL YInorg. Chem., 2024, 6317435.

[18]

ZhangY L, HeT F, ZhaoZ K, ShenA, GaoQ, RenA M, SuZ M, LiH, ChuH Y, ZouL YInorg. Chem., 2023, 627753.

[19]

HeT F, RenA M, LiG H, QuZ X, GuoJ F, HaoX L, ChenY N, ShenL, ZhangY L, ZouL YJ. Phys. Chem. Lett., 2021, 122232.

[20]

RungeE, GrossE K UPhys. Rev. Lett., 1984, 52997.

[21]

MaitraN T, ZhangF, CaveR J, BurkeKJ. Chem. Phys., 2004, 1205932.

[22]

MaitraN TJ. Chem. Phys., 2016, 144220901.

[23]

FroitzheimT, GrimmeS, MewesJ MJ. Chem. Theory Comput., 2022, 187702.

[24]

HallD, Sancho-GarcíaJ C, PershinA, RicciG, BeljonneD, Zysman ColmanE, OlivierYJ. Chem. Theory Comput., 2022, 184903.

[25]

BarmanD, TsuchiyaY, AdachiCNat. Commun., 2025, 165023.

[26]

LiQ, LiZAdv. Sci., 2017, 41600484.

[27]

MaY, XuP, LiM, JiX, ZhaoW, LuWNPJ Computational Materials, 2024, 10141.

[28]

LiY, ZhangB, RenA, WangD, ZhangJ, NieC, SuZ, ZouLChem. Eng. J., 2024, 501157676.

[29]

BoikoD A, ReschützeggerT, Sanchez-LengelingB, BlauS M, GomesGNat. Mach. Intell., 2025, 7771.

[30]

LuS, GaoZ, HeD, ZhangL, KeGNat. Commun., 2024, 157104.

[31]

ZhengX, TomiuraYJ. Cheminform., 2024, 1671.

[32]

WighD S, GoodmanJ M, LapkinA AWIREs Computational Molecular Science, 2022, 12e1603.

[33]

RogersD, HahnMJ. Chem. Inf. Model., 2010, 50742.

[34]

ZhouH, SkolnickJThe Journal of Physical Chemistry B, 2024, 1285363.

[35]

PedregosaF, VaroquauxG, GramfortA, MichelV, ThirionB, GriselO, BlondelM, PrettenhoferP, WeissR, DubourgV, VanderplasJ, PassosA, CournapeauD, BrucherM, PerrotM, DuchesnayÉJ. Mach. Learn. Res., 2011, 122825

[36]

BreimanLMach. Learn., 2001, 455.

[37]

FriedmanJ HAnnals of Statistics, 2001, 291189.

[38]

ChenT, GuestrinCProc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2016785

[39]

CoverT, HartPIEEE Trans. Inf. Theory, 1967, 1321.

[40]

SimmJ, HumbeckL, ZalewskiA, SturmN, HeyndrickxW, MoreauY, BeckB, SchuffenhauerAJ. Cheminform, 2021, 1396.

[41]

LiQ, FuN, OmeeS S, HuJNPJ Computational Materials, 2024, 10245.

[42]

RogersD, HahnMJ. Chem. Inf. Model., 2010, 50742.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/