PDF
Abstract
We present a novel breathing orbital valence bond (BOVB) scheme, termed generalized BOVB (GBOVB), which constructs the wave function as a linear combination of valence bond self-consistent field (VBSCF) and its excited structures without requiring SCF orbital optimization. By applying different truncation levels to the excited configurations, multiple GBOVB variants are developed, offering flexible trade-offs between computational efficiency and accuracy. Benchmark tests reveal that GBOVB4 achieves the highest accuracy at a greater computational cost, while GBOVB4(D) provides the best balance between performance and efficiency. Notably, GBOVB overcomes convergence challenges of conventional BOVB methods when dealing with delocalized orbitals. Despite these advantages, limitations remain: excitations beyond double excitations may be important, and neglecting interactions between doubly excited structures in GBOVB4(D) can reduce accuracy, especially for systems with large active spaces.
Keywords
Valence bond theory
/
Breathing orbital valence bond
/
Excited valence bond structure
Cite this article
Download citation ▾
Fuming Ying, Chen Zhou, Wei Wu.
Generalized Breathing Orbital Valence Bond Approach.
Chemical Research in Chinese Universities, 2025, 41(5): 1100-1105 DOI:10.1007/s40242-025-5172-z
| [1] |
RoosB O, TaylorP R, SiegbahnP E MChem. Phys., 1980, 48157.
|
| [2] |
SiegbahnP E M, HeibergA, RoosB O, LevyBPhys. Scr., 1980, 21323.
|
| [3] |
van LentheJ H, Balint-KurtiG GChem. Phys. Lett., 1980, 76138.
|
| [4] |
van LentheJ H, Balint-KurtiG GJ. Chem. Phys., 1983, 785699.
|
| [5] |
VerbeekJ, van LentheJ HJ. Mol. Struct.: THEOCHEM, 1991, 2291157.
|
| [6] |
DijkstraF, van LentheJ HChem. Phys. Lett., 1999, 310553.
|
| [7] |
DijkstraF, van LentheJ HJ. Chem. Phys., 2000, 1132100.
|
| [8] |
AnderssonK, MalmqvistP Å, RoosBOJ. Chem. Phys., 1992, 961218.
|
| [9] |
NakanoHJ. Chem. Phys., 1993, 997983.
|
| [10] |
SiegbahnP E M, AlmlöfJ, HeibergA, RoosB OJ. Chem. Phys., 1981, 742384.
|
| [11] |
ChenZ, SongJ, ShaikS, HibertyP C, WuWJ. Phys. Chem. A, 2009, 11311560.
|
| [12] |
ChenX, ChenZ, WuWJ. Chem. Phys., 2014, 141194113.
|
| [13] |
WuW, SongL, CaoZ, ZhangQ, ShaikSJ. Phys. Chem. A, 2002, 1062721.
|
| [14] |
SongL, WuW, ZhangQ, ShaikSJ. Comput. Chem., 2004, 25472.
|
| [15] |
HibertyP C, FlamentJ P, NoizetEChem. Phys. Lett., 1992, 1892595.
|
| [16] |
HibertyP C, HumbelS, ArchirelPJ. Phys. Chem., 1994, 9811697.
|
| [17] |
HibertyP C, HumbelS, ByrmanC P, van LentheJ H JChem. Phys., 1994, 1015969
|
| [18] |
HibertyP C, ShaikSTheor. Chem. Acc., 2002, 108255.
|
| [19] |
ZhangE, HiraoHJ. Phys. Chem. A, 2024, 1287167.
|
| [20] |
ZhangE, HiraoHMolecules, 2025, 302242.
|
| [21] |
MoY, DanovichD, ShaikSJ. Mol. Model, 2022, 28274.
|
| [22] |
ShearerJ, VasiliauskasD, LancasterK MChem. Commun., 2022, 5998.
|
| [23] |
ShaikS, DanovichD, ZareR NJ. Am. Chem. Soc., 2023, 14520132.
|
| [24] |
SuP, SongL, WuW, HibertyP C, ShaikS JComput. Chem., 2007, 28185.
|
| [25] |
LinstromP J, MallardW GNIST Chemistry WebBook, 2011, Gaithersburg, MD. National Institute of Standards and Technology.
|
| [26] |
JohnsonR DIINIST Computational Chemistry Comparison and Benchmark Database (Online), 2018
|
| [27] |
LeiningerM L, NielsenI M B, CrawforT D, JanssenC LChem. Phys. Lett., 2000, 328431.
|
| [28] |
MallardW G, LinstromP JNIST Chemistry WebBook, 1998, Gaithersburg, MD. National Institute of Standards and Technology.
|
RIGHTS & PERMISSIONS
Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH