Generalized Breathing Orbital Valence Bond Approach

Fuming Ying , Chen Zhou , Wei Wu

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1100 -1105.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1100 -1105. DOI: 10.1007/s40242-025-5172-z
Article
research-article

Generalized Breathing Orbital Valence Bond Approach

Author information +
History +
PDF

Abstract

We present a novel breathing orbital valence bond (BOVB) scheme, termed generalized BOVB (GBOVB), which constructs the wave function as a linear combination of valence bond self-consistent field (VBSCF) and its excited structures without requiring SCF orbital optimization. By applying different truncation levels to the excited configurations, multiple GBOVB variants are developed, offering flexible trade-offs between computational efficiency and accuracy. Benchmark tests reveal that GBOVB4 achieves the highest accuracy at a greater computational cost, while GBOVB4(D) provides the best balance between performance and efficiency. Notably, GBOVB overcomes convergence challenges of conventional BOVB methods when dealing with delocalized orbitals. Despite these advantages, limitations remain: excitations beyond double excitations may be important, and neglecting interactions between doubly excited structures in GBOVB4(D) can reduce accuracy, especially for systems with large active spaces.

Keywords

Valence bond theory / Breathing orbital valence bond / Excited valence bond structure

Cite this article

Download citation ▾
Fuming Ying, Chen Zhou, Wei Wu. Generalized Breathing Orbital Valence Bond Approach. Chemical Research in Chinese Universities, 2025, 41(5): 1100-1105 DOI:10.1007/s40242-025-5172-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

RoosB O, TaylorP R, SiegbahnP E MChem. Phys., 1980, 48157.

[2]

SiegbahnP E M, HeibergA, RoosB O, LevyBPhys. Scr., 1980, 21323.

[3]

van LentheJ H, Balint-KurtiG GChem. Phys. Lett., 1980, 76138.

[4]

van LentheJ H, Balint-KurtiG GJ. Chem. Phys., 1983, 785699.

[5]

VerbeekJ, van LentheJ HJ. Mol. Struct.: THEOCHEM, 1991, 2291157.

[6]

DijkstraF, van LentheJ HChem. Phys. Lett., 1999, 310553.

[7]

DijkstraF, van LentheJ HJ. Chem. Phys., 2000, 1132100.

[8]

AnderssonK, MalmqvistP Å, RoosBOJ. Chem. Phys., 1992, 961218.

[9]

NakanoHJ. Chem. Phys., 1993, 997983.

[10]

SiegbahnP E M, AlmlöfJ, HeibergA, RoosB OJ. Chem. Phys., 1981, 742384.

[11]

ChenZ, SongJ, ShaikS, HibertyP C, WuWJ. Phys. Chem. A, 2009, 11311560.

[12]

ChenX, ChenZ, WuWJ. Chem. Phys., 2014, 141194113.

[13]

WuW, SongL, CaoZ, ZhangQ, ShaikSJ. Phys. Chem. A, 2002, 1062721.

[14]

SongL, WuW, ZhangQ, ShaikSJ. Comput. Chem., 2004, 25472.

[15]

HibertyP C, FlamentJ P, NoizetEChem. Phys. Lett., 1992, 1892595.

[16]

HibertyP C, HumbelS, ArchirelPJ. Phys. Chem., 1994, 9811697.

[17]

HibertyP C, HumbelS, ByrmanC P, van LentheJ H JChem. Phys., 1994, 1015969

[18]

HibertyP C, ShaikSTheor. Chem. Acc., 2002, 108255.

[19]

ZhangE, HiraoHJ. Phys. Chem. A, 2024, 1287167.

[20]

ZhangE, HiraoHMolecules, 2025, 302242.

[21]

MoY, DanovichD, ShaikSJ. Mol. Model, 2022, 28274.

[22]

ShearerJ, VasiliauskasD, LancasterK MChem. Commun., 2022, 5998.

[23]

ShaikS, DanovichD, ZareR NJ. Am. Chem. Soc., 2023, 14520132.

[24]

SuP, SongL, WuW, HibertyP C, ShaikS JComput. Chem., 2007, 28185.

[25]

LinstromP J, MallardW GNIST Chemistry WebBook, 2011, Gaithersburg, MD. National Institute of Standards and Technology.

[26]

JohnsonR DIINIST Computational Chemistry Comparison and Benchmark Database (Online), 2018

[27]

LeiningerM L, NielsenI M B, CrawforT D, JanssenC LChem. Phys. Lett., 2000, 328431.

[28]

MallardW G, LinstromP JNIST Chemistry WebBook, 1998, Gaithersburg, MD. National Institute of Standards and Technology.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/