Darwin4Matter: A Platform Integrating Machine Learning and Quantum Chemistry for New Materials Design

Hui Rong , Yili Chen , Shubo Zhang , Yue Chen , Lin Shen , Wei-Hai Fang

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1014 -1020.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1014 -1020. DOI: 10.1007/s40242-025-5170-1
Article
research-article

Darwin4Matter: A Platform Integrating Machine Learning and Quantum Chemistry for New Materials Design

Author information +
History +
PDF

Abstract

Machine learning (ML) has emerged to play a more and more important role in material science. Here, we develop a platform named Darwin4Matter that integrates machine learning and quantum chemistry for new materials discovery. The framework consists of six steps: quantum chemistry prediction, Δ-machine learning correction, molecular augmentation, machine learning prediction, molecular production, and verification. Using this platform, we start from a very small dataset and design three new functional molecules with high refractive indexes in the visible spectrum, which serves as the capping layer of organic light-emitting diode devices for improving light extraction efficiency. The superior performance over currently used materials has been verified experimentally, exhibiting significant commercial value in the field of advanced display materials.

Keywords

Data-driven materials design / Machine learning / Quantum chemistry / Organic light-emitting diode

Cite this article

Download citation ▾
Hui Rong, Yili Chen, Shubo Zhang, Yue Chen, Lin Shen, Wei-Hai Fang. Darwin4Matter: A Platform Integrating Machine Learning and Quantum Chemistry for New Materials Design. Chemical Research in Chinese Universities, 2025, 41(5): 1014-1020 DOI:10.1007/s40242-025-5170-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LanY, HanX, TongM, HuangH, YangQ, LiuD, ZhaoX, ZhongCNat. Commun., 2018, 95274.

[2]

de PabloJ J, JacksonN E, WebbM A, ChenL Q, MooreJ E, MorganD, JacobsR, PollockT, SchlomD G, TobererE S, AnalytisJ, DaboI, DeLongchampD M, FieteG A, GrasonG M, HautierG, MoY, RajanK, ReedE J, RodriguezE, StevanovicV, SuntivichJ, ThorntonK, ZhaoJ CNPJ Comput. Mater., 2019, 541.

[3]

LiuY, NiuC, WangZ, GanY, ZhuY, SunS, ShenTJ. Mater. Sci. Technol., 2020, 57113.

[4]

XuD, ZhangQ, HuoX, WangY, YangMMater. Genome Eng. Adv., 2023, 1e11.

[5]

HortonM K, HuckP, YangR X, MunroJ M, DwaraknathS, GanoseA M, KingsburyR S, WenM, ShenJ X, MathisT S, KaplanA D, BerketK, RiebesellJ, GeorgeJ, RosenA S, Spotte-SmithE W C, McDermottM J, CohenO A, DunnA, KunerM C, RignaneseG-M, PetrettoG, WaroquiersD, GriffinS M, NeatonJ B, ChrzanD C, AstaM, HautierG, CholiaS, CederG, OngS P, JainA, PerssonKNat. Mater., 2025

[6]

AdamoC, JacqueminDTheory. Chem. Soc. Rev., 2013, 42845.

[7]

SasikumarD, JohnA T, SunnyJ, HariharanMChem. Soc. Rev., 2020, 496122.

[8]

BurschM, MewesJ, HansenA, GrimmeSAngew. Chem., 2022, 134e202205735.

[9]

BhatV, CallawayC P, RiskoCChem. Rev., 2023, 1237498.

[10]

WangN, ZangZ-H, SunB B, LiB, TianJ LFood Res. Int., 2024, 192114776.

[11]

Nieto-DraghiC, FayetG, CretonB, RozanskaX, RotureauP, de HemptinneJ C, UngererP, RousseauB, AdamoCChem. Rev., 2015, 11513093.

[12]

Sanchez-LengelingB, Aspuru-GuzikAScience, 2018, 361360.

[13]

BenderA, SchneiderN, SeglerM, Patrick WaltersW, EngkvistO, RodriguesTNat. Rev. Chem., 2022, 6428.

[14]

AbramsonJ, AdlerJ, DungerJ, EvansR, GreenT, PritzelA, RonnebergerO, WillmoreL, BallardA J, BambrickJ, BodensteinS W, EvansD A, HungC C, O’NeillM, ReimanD, TunyasuvunakoolK, WuZ, ŽemgulytėA, ArvanitiE, BeattieC, BertolliO, BridglandA, CherepanovA, CongreveM, Cowen-RiversA I, CowieA, FigurnovM, FuchsF B, GladmanH, JainR, KhanY A, LowC M R, PerlinK, PotapenkoA, SavyP, SinghS, SteculaA, ThillaisundaramA, TongC, YakneenS, ZhongE D, ZielinskiM, ZidekA, BapstV, KohliP, JaderbergM, HassabisD, JumperJ MNature, 2024, 630493.

[15]

MirzaA, AlamparaN, KunchapuS, Ríos-GarcíaM, EmoekabuB, KrishnanA, GuptaT, Schilling-WilhelmiM, OkerekeM, AneeshA, AsgariM, EberhardtJ, ElahiA M, ElbeheiryH M, GilM V, GlaubitzC, GreinerM, HolickC T, HoffmannT, IbrahimA, KlepschL C, KösterY, KrethF A, MeyerJ, MiretS, PeschelJ M, RinglebM, RoesnerN C, SchreiberJ, SchubertU S, StafastL M, WonankeA D D, PielerM, SchwallerP, JablonkaK MNat. Chem., 2025, 171027.

[16]

RamakrishnanR, DralP O, RuppM, von LilienfeldO AJ. Chem. Theory Comput., 2015, 112087.

[17]

TibshiraniRJ. R. Stat. Soc. Ser. B. Stat. Methodol., 1996, 58267.

[18]

JanetJ P, KulikH JJ. Phys. Chem. A, 2017, 1218939.

[19]

DongJ, ZhongJACM Comput. Surv., 2025, 571

[20]

GuoZ, HuS, HanZ K, OuyangRJ. Chem. Theory Comput., 2022, 184945.

[21]

VirshupA M, Contreras-GarciaJ, WipfP, YangW, BeratanD NJ. Am. Chem. Soc., 2013, 1357296.

[22]

JensenJ HChem. Sci., 2019, 103567.

[23]

Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., Kaiser L., Polosukhin I., arXiv, 2023, arXiv:1706.03762v7 (https://doi.org/10.48550/arXiv.1706.03762).

[24]

Duvenaud D., Maclaurin D., Aguilera-Iparraguirre J., Gómez-Bombarelli R., Hirzel T., Aspuru-Guzik A., Adams R. P., arXiv, 2015, arXiv:1509.09292v2 (https://doi.org/10.48550/arXiv.1509.09292).

[25]

LandrumG, ToscoP, KelleyB, RodriguezR, CosgroveD, VianelloR, Sriniker GedeckP, JonesG, KawashimaE, NadineSchneider NealschneiderD, DalkeA, Tadhurst-Cdd SwainM, ColeB, TurkS, SavelevA, VaucherA, WójcikowskiM, TakeI, FaaraH, ScalfaniV F, WalkerR, ProbstD, UjiharaK, MaederN, MonatJ, LehtivarjoJ, GodinGRDKit, 2025Zenodo

[26]

WardL, DunnA, FaghaniniaA, ZimmermannN E R, BajajS, WangQ, MontoyaJ, ChenJ, BystromK, DyllaM, ChardK, AstaM, PerssonK A, SnyderG J, FosterI, JainAComput. Mater. Sci., 2018, 15260.

[27]

KeG, MengQ, FinleyT, WangT, ChenW, MaW, YeQ, LiuT YProceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), 2017Long Beach, USA

[28]

Chen T., Guestrin C., arXiv, 2016, arXiv:1603.02754v3 (https://doi.org/10.48550/arXiv.1603.02754).

[29]

LiuX, WenX-L, ZhouY, TangC, TangD, WangQ, ShiY, LiuL, SunW, FengK, FangW-H, QiaoJ, ShenL, ChenXChem. Sci., 2025

[30]

KangB, SeokC, LeeJJ. Chem. Inf. Model., 2020, 605984.

[31]

SokolovM, BoldB M, KranzJ J, HöfenerS, NiehausT A, ElstnerMJ. Chem. Theory Comput., 2021, 172266.

[32]

BeckeA DJ. Chem. Phys., 1993, 985648.

[33]

OuyangR, CurtaroloS, AhmetcikE, SchefflerM, GhiringhelliL MPhys. Rev. Mater., 2018, 2083802.

[34]

PengD, LiuL, XieB-B, ShenL, ChenX, FangW-HJ. Photochem. Photobiol., A, 2025, 466116374.

[35]

MerchantA, BatznerS, SchoenholzS S, AykolM, CheonG, CubukE DNature, 2023, 62480.

[36]

Yang H., Hu C., Zhou Y., Liu X., Shi Y., Li J., Li G., Chen Z., Chen S., Zen, C., Horton M., Pinsler R., Fowler A., Zügner D., Xie T., Smith J., Sun L., Wang Q., Kong L., Liu C., Hao H., Lu Z., arXiv, 2024, arXiv:2405.04967v2 (https://doi.org/10.48550/arXiv.2405.04967).

[37]

ZeniC, PinslerR, ZügnerD, FowlerA, HortonM, FuX, WangZ, ShysheyaA, CrabbéJ, UedaS, SordilloR, SunL, SmithJ, NguyenB, SchulzH, LewisS, HuangC-W, LuZ, ZhouY, YangH, HaoH, LiJ, YangC, LiW, TomiokaR, XieTNature, 2025, 639624.

[38]

Wood B. M., Dzamba M., Fu X., Gao M., Shuaibi M., Barroso-Luque L., Abdelmaqsoud K., Gharakhanyan V., Kitchin J. R., Levine D. S., Michel K., Sriram A., Cohen T., Das A., Rizvi A., Sahoo S. J., Ulissi Z. W., Zitnick C. L., arXiv, 2025, arXiv:2506.23971v1 (https://doi.org/10.48550/arXiv.2506.23971).

[39]

Xie T., Fu X., Ganea O.-E., Barzilay R., Jaakkola T., arXiv, 2022, arXiv:2110.06197v3 (https://doi.org/10.48550/arXiv.2110.06197).

[40]

YuZ X, ZhangS B, PengD, ZhangZ-Y, ChenY, ShenLCommun. Comput. Chem., 2025, 750.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/