Step-scheme 0D/2D Heterojunctions Based on Ag2S Nanoparticles/Graphite-C3N4 Nanosheets with Enhanced Visible-light Photocatalytic CO2 Reduction Performance

Jian Wang , Xin Li , Xin Qu , Bo Feng , Xuefei Li , Yanqing Liu , Maobin Wei

Chemical Research in Chinese Universities ›› : 1 -11.

PDF
Chemical Research in Chinese Universities ›› :1 -11. DOI: 10.1007/s40242-025-5164-z
Research Article
research-article

Step-scheme 0D/2D Heterojunctions Based on Ag2S Nanoparticles/Graphite-C3N4 Nanosheets with Enhanced Visible-light Photocatalytic CO2 Reduction Performance

Author information +
History +
PDF

Abstract

Heterostructured photocatalysts are promising candidate materials in the field of photocatalysis. Heterojunctions play an important role in the separation of carriers in space. In this study, a 0D/2D step (S)-scheme heterojunctions were prepared by in-situ growth of Ag2S nanoparticles (NPs) onto porous graphite (g)-C3N4 nanosheets. Ag2S NPs effectively shortened the diffusion path of carriers, thus promoting interfacial charge migration and further improving surface photocatalytic activity. X-Ray photoelectron spectroscopy and photoelectrochemical tests indicated an internal electric field formed at the g-C3N4/Ag2S interface, which enabled efficient separation and enhanced the photocatalytic CO2 reduction activity while preserving the maximum redox capacity of photogenerated carriers. Under the irradiation of visible light, the CO yield of Ag2S/g-C3N4 composites was about 17.24 µmol·g−1·h−1 and their CH4 yield was about 2.36 µmol·g−1·h−1, both of which were better than those of Ag2S and g-C3N4. This work provides new insights into novel structures of S-scheme heterojunctions for photocatalytic CO2 reduction.

Keywords

S-Scheme / Photocatalysis / CO2 reduction / 0D/2D Heterojunction

Cite this article

Download citation ▾
Jian Wang, Xin Li, Xin Qu, Bo Feng, Xuefei Li, Yanqing Liu, Maobin Wei. Step-scheme 0D/2D Heterojunctions Based on Ag2S Nanoparticles/Graphite-C3N4 Nanosheets with Enhanced Visible-light Photocatalytic CO2 Reduction Performance. Chemical Research in Chinese Universities 1-11 DOI:10.1007/s40242-025-5164-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen J, Chen Y, Mao B, Wang X, Peng L. Environ. Sci. Pollut. R., 2022, 29: 51537.

[2]

Dang H, Guan B, Chen J, Ma Z, Chen Y, Zhang J, Guo Z, Chen L, Hu J, Yi C, Yao S, Huang Z. Energy Fuels, 2024, 38: 4836

[3]

Zhang Z, Zhou R, Ke L, Li J, Jayan H, El-Seedi H R, Zou X, Guo Z. Trends Food Sci. Technol., 2024, 154: 154.

[4]

Zhang Y, Gao M, Chen S, Wang H, Huo P. Acta Phys.-Chim. Sin., 2023, 39: 2211051.

[5]

Khan K Y, Tang Y, Cheng P, Song Y, Li X, Lou J, Iqbal B, Zhao X, Hameed R, Li G. Appl. Soil Ecol., 2024, 197: 105331.

[6]

Nazir M J, Li G, Nazir M M, Zulfiqar F, Siddique K H M, Iqbal B, Du D. Soil Till. Res., 2024, 237: 105959.

[7]

Xiao Q, Liu T, Zhou Q H, Li L Y, Chang C T, Gao D W, Li D Y, You F F. Chem. Res. Chinese Universities, 2024, 40: 484

[8]

Yan S R, Zhang L, Shi S H, Ren Y Y, Liu W H, Li Y J, Duan F, Lu S L, Du M L, Chen M Q. Chem. Res. Chinese Universities, 2025, 41: 121

[9]

Xiao M J, Li D, Wei Y Z, He Y L, Wang Z M, Yu R B. Chem. Res. Chinese Universities, 2024, 40: 513

[10]

Zeng B Y, Xia T T, Sun Y L, Zhang P, Wang W J, Zhao K. Chem. Res. Chinese Universities, 2024, 40: 451

[11]

Xu Y, Hassan M M, Ali S, Li H, Ouyang Q, Chen Q. J. Agric. Food Chem., 2021, 69: 1667

[12]

Chai Y, Tang S, Wang Q, Wu Q, Liang J, Li L. Appl. Catal. B: Environ., 2023, 338: 123012

[13]

Wu Q, Zhong Y, Chen R, Ling G, Wang X, Shen Y, Hao C. Ind. Crop. Prod., 2024, 222: 119676

[14]

Cui E, Lu Y, Jiang J, Arramel, Wang D, Zhai T. Chinese J. Catal., 2024, 59: 126

[15]

Jiang J, Li F, Zou J, Liu S, Wang J, Zou Y, Xiang K, Zhang H, Zhu G, Zhang Y. Science China Materials, 2022, 65: 2895.

[16]

Liu D, Sun B, Bai S, Gao T, Zhou G. Chinese J. Catal., 2023, 50: 11

[17]

Jiang Z, Cheng B, Zhang L, Zhang Z, Bie C. Chinese J. Catal., 2023, 52: 18.

[18]

Ong C B, Ng L Y, Mohammad A W. Renew. Sustain. Energy Rev., 2018, 81: 536

[19]

Zhang Z Y, Jiang D L, Li D, He M Q, Chen M. Appl. Catal. B: Environ., 2016, 183: 113

[20]

Yu C, Song J, Kim T I. ACS Catal., 2023, 13: 665

[21]

Zheng Z, Tian S, Feng Y, Zhao S, Li X, Wang S, He Z. Chinese J. Catal., 2023, 54: 88

[22]

Feng Y X, Yu H J, Lu T G, Zheng Z Y, Tian S, Xiang L, Zhao S, Wang S, He Z. Rare Met., 2024, 43: 5891

[23]

Xiao L, Zhang J, Lu T, Zhou G H, Ren Y, Zheng Z, Yuan X, Wang S, He Z. NPJ Clean Water, 2024, 7: 98

[24]

Deepthi V, Sebastian A, Vidhya B. J. Sol-Gel Sci. Technol., 2024, 109: 362

[25]

Qi B, Shen R, Ren Z, Teng Y, Ding H, Zhang X, Zhang Y, Hao L, Li X. J. Mater. Sci. Tech., 2025, 232: 65

[26]

Wang X P, Li Y J, Li T, Jin Z L. Adv. Sustain. Syst., 2023, 7: 2200139

[27]

Wang Y F, Zhou G S, Xu Y R, Cheng Y, Song M S, Jin J, Liu X L, Lu Z Y. Chem. Res. Chinese Universities, 2025, 41: 741

[28]

Ye L, Jin X, Liu C, Ding C, Wong P K. Appl. Catal. B: Environ., 2016, 187: 281

[29]

Li X, Shen D, Liu C, Li J, Yan Y. J. Colloid Interface Sci., 2019, 554: 468

[30]

Yang X D, Guo Z Q, Xu Y C, Li Z L, Zhou Y T, Yang Z M, Zhou Z S, Gao Y, Zhang J S. Chem. Res. Chinese Universities, 2024, 40: 536

[31]

Zhu Z, Zhang H Y, Teng Y, Lin X, Li M, Li Y J. Surf. Interfaces, 2023, 41: 103160

[32]

Faraji M, Parsaee F, Kheirmand M. J. Solid State Chem., 2021, 303: 122529

[33]

Liu J, Tian N, Ren S, Zhang Z, Yang Z, Xue Y, Zhang Y, Gao L, Huang H. Adv. Funct. Mater., 2025, 35: 2413406

[34]

Jiang J, Xiong Z, Wang H, Liao G, Bai S, Zou J, Wu P, Zhang P, Li X. J. Mater. Sci. Tech., 2022, 118: 15

[35]

Wang H, Jiang J, Yu L, Peng J, Song Z, Xiong Z, Li N, Xiang K, Zou J, Hsu J. Small, 2023, 19: e2301116

[36]

Wen D, Wang N, Peng J, Majima T, Jiang J. Chinese J. Catal., 2025, 69: 58.

[37]

Ma S, Pan L G, You T, Wang K. J. Agric. Food Chem., 2021, 69: 4874

[38]

Sun J, Qu Y, Wang G. Chem. Eng. J., 2025, 514: 163147

[39]

Xu G, Zhang H, Wei J, Zhang H X, Ye J. ACS Nano, 2018, 12: 5333

[40]

Xiang J X, Xu P, Wang J, Shi Y, Yang S T, Tang D Q, Tang S P, Li Y J. J. Alloys Compd., 2024, 1002: 175476

[41]

Qi K, Imparato C, Almjasheva O, Khataee A, Zheng W. J. Colloid Interface Sci., 2024, 675: 150

[42]

Ke Y, Wang S, Jin F. Catal. Sci. Tech., 2024, 14: 1595

[43]

Xu M, Li Z, Shen R, Zhang X, Zhang Z, Zhang P, Li X. Chinese J. Catal., 2025, 70: 431.

[44]

Jiang J, Bai S, Yang M, Zou J, Li N, Peng J, Wang H, Xiang K, Liu S, Zhai T. Nano Research, 2022, 15: 5977

[45]

Ding H, Shen R, Huang K, Huang C, Liang G, Zhang P, Li X. Adv. Funct. Mater., 2024, 34: 2400065

[46]

Gao R, Shen R, Huang C, Huang K, Liang G, Zhang P, Li X. Angew. Chem. Int. Ed., 2025, 64: e202414229

[47]

Wang C C, You C J, Rong K, Shen C Q, Yang F, Li S J. Acta Phys.-Chim. Sin., 2024, 40: 761

[48]

Chu Y., Zheng Y., Xu J., Dong R., Zhu F., Wang K., Wu Y., He Y., Inorg. Chem. Front., 2025, DOI: https://doi.org/10.1039/D5QI01226K.

[49]

Xu J, Yan X, Reng X, Dong R, Chu Y, Zheng Y, Wang K, Wu Y, He Y. J. Environ. Chem. Eng., 2025, 13: 118386

[50]

Liu Z K, Li Y J, Jin Z L. J. Materi. Chem. C, 2023, 11: 9327

[51]

Shen R, Liang G, Hao L, Zhang P, Li X. Adv. Mater., 2023, 35: 2303649

[52]

Yang M X, Li Y J, Jin Z L. Adv. Sustain. Syst., 2023, 7: 2200344

[53]

Xia C, Zheng Y, Chu Y, Xu J, Dong R, Zhuang L, Zhao L, He Y. J. Environ. Chem. Eng., 2025, 13: 117869

[54]

Huang K, Liang G, Sun S, Hu H, Peng X, Shen R, Li X. J. Mater. Sci. Tech., 2024, 193: 98

[55]

Zheng Y, Chu Y, Dong R, Xu J, Zhao L, Wang K, Wu Y, He Y. J. Alloys Compd., 2025, 1037: 182237

[56]

Liu H, Zhang Y Y, Li D J, Li Y J, Jin Z L. ACS Appl. Energy Mater., 2022, 5: 2474

[57]

Wang S, Ke Y H, Jin F, Li Y J, Jin Z L. Mater. Today Chem., 2025, 43: 102450

[58]

Zheng C Y, Jiang G P, Li Y J, Jin Z L. J. Alloys Compd., 2022, 904: 164041

[59]

Waqas M. Chem. Res. Chinese Universities, 2024, 40: 529

[60]

Zhou S Y, Li P, Zhang C B, Wang Y, Dong G L, Jia R K. Chem. Res. Chinese Universities, 2025, 41: 583

[61]

Liu Z, Wang L, Liu P, Zhao K, Ye S, Liang G. Food Chem., 2021, 357: 129753

[62]

Yang B, Yu T T, Yang C Y, Wu W W, Jiang J Z. J. Alloys Compd., 2025, 1010: 177413

[63]

Cui L Q, Chen F T, Li Y J, Hu H, Li J, Gao J F, Lin X, Chen Z. Mater. Today Chem., 2024, 37: 102025

[64]

Meng C C, Huang M, Li Y C. Chem. Res. Chinese Universities, 2023, 39: 697

[65]

Teng Y, Ning L L, Tan C W, Zhao J, Xiong Y W, Zou H L, Ye Z, Zhang X, Kuang D, Li Y J. Adv. Funct. Mater., 2025, 35: 2414892

[66]

Du J Y, Jin F, Li Y J, Jiang G P, Jin Z L. J. Mater. Chem. A, 2025, 13: 4994

[67]

Fu C H, Li D, Zhang J W, Guo W, Yang H, Zhao B, Chen Z M, Fu X, Liang Z Q, Jiang L. Chem. Res. Chinese Universities, 2023, 39: 891

[68]

Luo L, Liu X, Ma S, Li L, You T. Food Chem., 2020, 322: 126778

[69]

Wang X, Dong S, Qi K, Popkov V, Xiang X. Acta Phys.-Chim. Sin., 2024, 40: 2408005.

[70]

Jiang Z, Long Q, Cheng B, He R, Wang L. J. Mater. Sci. Tech., 2023, 162: 1

[71]

Zhang X, Xie X, Wang H, Zhang J, Xie Y. J. Am. Chem. Soc., 2012, 135: 18

[72]

Lei Y, Ye J, García-Antón J, Liu H. Chinese J. Catal., 2023, 53: 30.

[73]

Li F, Zhu G, Jiang J, Yang L, Deng F, Arramel, Li X. J. Mater. Sci. Tech., 2024, 177: 142

[74]

Liu C, Gao T, Wang G, Cheng Q, Wang K. Chem. Res. Chinese Universities, 2025, 41: 726

[75]

Li X, Jiang H, Ma C, Zhu Z, Song X, Wang H, Huo P, Li X. Appl. Catal. B-Environ., 2021, 283: 119638

[76]

Wang Q, Ye K, Xu L, Hu W, Li Y. Chem. Commun. (Camb.), 2019, 55: 14801

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

PDF

25

Accesses

0

Citation

Detail

Sections
Recommended

/