Overcoming the Spin-Orbit Coupling Limitation: Cooperative Singlet-Triplet Energy Gap and Reorganization Energy Engineering for High-Efficiency Thermally Activated Delayed Fluorescence in Carbene-Cu(I)-Amide Systems

Tengfei He , Zihan Zhang , Lifang Yin , Yi Zhao , Mengnan Zhao , Qiang Gao , Yajun Yin , Yufei Yang , Tongshun Wu , Luyi Zou

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1133 -1143.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1133 -1143. DOI: 10.1007/s40242-025-5163-0
Article
research-article

Overcoming the Spin-Orbit Coupling Limitation: Cooperative Singlet-Triplet Energy Gap and Reorganization Energy Engineering for High-Efficiency Thermally Activated Delayed Fluorescence in Carbene-Cu(I)-Amide Systems

Author information +
History +
PDF

Abstract

This study systematically investigated the structure-property relationship of Cu(I) carbene-metal-amide (CMA) complexes using density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. Potential energy surface analysis revealed that planar geometry represents the most stable configuration for both ground and excited states. By modulating ligand structures, we not only elucidated the luminescence mechanism in solution phase but also demonstrated that the synergistic effect of small singlet-triplet energy gap (ΔEST) and low reorganization energy (λ) can facilitate rapid reverse intersystem crossing (RISC) despite weak spin-orbit coupling (SOC). Comparative studies between solution and solid phases showed that molecular packing in crystalline state effectively suppresses structural distortion, significantly enhancing radiative transition efficiency by reducing non-radiative decay. The planar geometry-enabled fast ISC/RISC cycling ensures efficient triplet exciton utilization, leading to high-performance thermally activated delayed fluorescence (TADF). Our work provides molecular-level insights into the TADF mechanism of Cu-CMA systems, particularly revealing a non-conventional exciton conversion mechanism governed by the “weak SOC-small ΔEST-low λ″ synergy, which offers new design principles for developing cost-effective, high-efficiency copper-based TADF materials.

Keywords

Thermally activated delayed fluorescence / Cu(I) carbene-metal-amide (CMA) complex / Structure-property relationship / Weak spin-orbit coupling limitation / Cooperative singlet-triplet energy gap and reorganization energy

Cite this article

Download citation ▾
Tengfei He, Zihan Zhang, Lifang Yin, Yi Zhao, Mengnan Zhao, Qiang Gao, Yajun Yin, Yufei Yang, Tongshun Wu, Luyi Zou. Overcoming the Spin-Orbit Coupling Limitation: Cooperative Singlet-Triplet Energy Gap and Reorganization Energy Engineering for High-Efficiency Thermally Activated Delayed Fluorescence in Carbene-Cu(I)-Amide Systems. Chemical Research in Chinese Universities, 2025, 41(5): 1133-1143 DOI:10.1007/s40242-025-5163-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YingA, HuangY H, LuC H, ChenZ, LeeW K, ZengX, ChenT, CaoX, WuC C, GongS, YangCACS Appl. Mater. Interfaces, 2021, 1313478.

[2]

SongX F, LiZ W, ChenW K, GaoY J, CuiGInorg. Chem., 2022, 617673.

[3]

YingA, GongSChem. Eur. J., 2023, 29e202301885.

[4]

LiT Y, ZhengS J, DjurovichP I, ThompsonM EChem. Rev., 2024, 1244332.

[5]

DiD, RomanovA S, YangL, RichterJ M, RivettJ P H, JonesS, ThomasT H, Abdi JalebiM, FriendR H, LinnolahtiM, BochmannM, CredgingtonDScience, 2017, 356159.

[6]

LeitlM J, KrylovaV A, DjurovichP I, ThompsonM E, YersinHJ. Am. Chem. Soc., 2014, 13616032.

[7]

YingA, TanY, GongSAdv. Opt. Mater., 2024, 122303333.

[8]

GhoshM, ChatterjeeJ, PanwariaP, KudluA, TothadiS, KhanSAngew. Chem. Int. Ed., 2024, 63e202410792.

[9]

ChenY N, HeT F, ChengY X, ZhanH M, RenA M, WuT S, ZhangB H, ZhangY L, ZhangH X, ZouL YOrg. Electron., 2021, 97106185.

[10]

HeT F, RenA M, ChenY N, HaoX L, ShenL, ZhangB H, WuT S, ZhangH X, ZouL YInorg. Chem., 2020, 5912039.

[11]

ZhaoZ K, HeT F, GaoQ, RenA M, WuT S, GuoJ F, ChuH Y, SuZ M, LiH, ZouL YInorg. Chem., 2024, 6317435.

[12]

ZhangY L, HeT F, ZhaoZ K, ShenA, GaoQ, RenA M, SuZ M, LiH, ChuH Y, ZouL YInorg. Chem., 2023, 627753.

[13]

HeT F, RenA M, LiG H, QuZ X, GuoJ F, HaoX L, ChenY N, ShenL, ZhangY L, ZouL YJ. Phys. Chem. Lett., 2021, 122232.

[14]

CuttellD G, KuangS M, FanwickP E, McMillinD R, WaltonR AJ. Am. Chem. Soc., 2002, 1246.

[15]

ZhangQ, ZhouQ, ChengY, WangL, MaD, JingX, WangFAdv. Mater., 2004, 16432.

[16]

CzerwieniecR, YuJ, YersinHInorg. Chem., 2011, 508293.

[17]

HamzeR, ShiS, KapperS C, Muthiah RavinsonD S, EstergreenL, JungM C, TadleA C, HaigesR, DjurovichP I, PeltierJ L, JazzarR, BertrandG, BradforthS E, ThompsonM EJ. Am. Chem. Soc., 2019, 1418616.

[18]

RavinsonD S M, ThompsonM EMater. Horiz., 2020, 71210.

[19]

YingA, AiY, YangC, GongSAngew. Chem. Int. Ed., 2022, 61e202210490.

[20]

FengJ, ReponenA P M, RomanovA S, LinnolahtiM, BochmannM, GreenhamN C, PenfoldT, CredgingtonDAdv. Funct. Mater., 2021, 312005438.

[21]

MunizC N, SchaabJ, RazgoniaevA, DjurovichP I, ThompsonM EJ. Am. Chem. Soc., 2022, 14417916.

[22]

LiT Y, SchaabJ, DjurovichP I, ThompsonM EJ. Mater. Chem. C, 2022, 104674.

[23]

TangR, XuS, LamT L, ChengG, DuL, WanQ, YangJ, HungF F, LowK H, PhillipsD L, CheC MAngew. Chem. Int. Ed., 2022, 61e202203982.

[24]

ZhangB H, LiJ A, WangM, RenA M, HeT F, LinP P, ZhangY L, XiX Y, ZouL YPhys. Chem. Chem. Phys., 2021, 235652.

[25]

ZouL Y, ZhangZ L, RenA M, RanX Q, FengJ KTheor. Chem. Acc., 2010, 126361.

[26]

RanX Q, FengJ K, RenA M, TianW Q, ZouL Y, LiuY L, SunC CJ. Phys. Org. Chem., 2009, 22680.

[27]

HayP J, WadtW RJ. Chem. Phys., 1985, 82299.

[28]

HariharanP C, PopleJ ATheor. Chim. Acta, 1973, 28213.

[29]

FrischM J, TrucksG W, SchlegelH B, ScuseriaG E, RobbM A, CheesemanJ R, ScalmaniG, BaroneV, MennucciB, PeterssonG A, NakatsujiH, CaricatoM, LiX, HratchianH P, IzmaylovA F, BloinoJ, ZhengG, SonnenbergJ L, HadaM, EharaM, ToyotaK, FukudaR, HasegawaJ, IshidaM, NakajimaT, HondaY, KitaoO, NakaiH, VrevenT, MontgomeryJ AJr, PeraltaJ E, OgliaroF, BearparkM, HeydJ J, BrothersE, KudinK N, StaroverovV N, KobayashiR, NormandJ, RaghavachariK, RendellA, BurantJ C, IyengarS S, TomasiJ, CossiM, RegaN, MillamJ M, KleneM, KnoxJ E, CrossJ B, BakkenV, AdamoC, JaramilloJ, GompertsR, StratmannR E, YazyevO, AustinA J, CammiR, PomelliC, OchterskiJ W, MartinR L, MorokumaK, ZakrzewskiV G, VothG A, SalvadorP, DannenbergJ J, DapprichS, DanielsAD, FarkasÖ, ForesmanJ B, OrtizJ V, CioslowskiJ, FoxD JGaussian 16 (Revision C.01), 2016, Wallingford CT. Gaussian, Inc..

[30]

TaoJ, PerdewJ P, StaroverovV N, ScuseriaG EPhys. Rev. Lett., 2003, 91146401.

[31]

StephensP J, DevlinF J, ChabalowskiC F, FrischM JJ. Phys. Chem., 1994, 9811623.

[32]

PerdewJ P, BurkeK, ErnzerhofMPhys. Rev. Lett., 1996, 773865.

[33]

AdamoC, BaroneVJ. Chem. Phys., 1999, 1106158.

[34]

ZhaoY, TruhlarD GJ. Phys. Chem. A, 2004, 1086908.

[35]

GrimmeS, AntonyJ, EhrlichS, KriegHJ. Chem. Phys., 2010, 132154104.

[36]

BoeseA D, MartinJ M LJ. Chem. Phys., 2004, 1213405.

[37]

ZhaoY, TruhlarD GTheor. Chem. Acc., 2008, 120215.

[38]

ChungL W, SameeraW M C, RamozziR, PageA J, HatanakaM, PetrovaG P, HarrisT V, LiX, KeZ, LiuF, LiH B, DingL, MorokumaKChem. Rev., 2015, 1155678.

[39]

HariharanP C, PopleJ AMol. Phys., 1974, 27209.

[40]

HayP J, WadtW RJ. Chem. Phys., 1985, 82270.

[41]

KimD, BrédasJ LJ. Am. Chem. Soc., 2009, 13111371.

[42]

PapajakE, ZhengJ, XuX, LeverentzH R, TruhlarD GJ. Chem. Theory Comput., 2011, 73027.

[43]

GrimmeS, EhrlichS, GoerigkLJ. Comput. Chem., 2011, 321456.

[44]

NeeseFWIREs Comput. Mol. Sci., 2022, 12e1606.

[45]

WeigendF, AhlrichsRPhys. Chem. Chem. Phys., 2005, 73297.

[46]

ShuaiZ, PengQPhys. Rep., 2014, 537123.

[47]

TongG S M, ChowP K, ToW P, KwokW M, CheC MChem. Eur. J., 2014, 206433.

[48]

KestnerN R, LoganJ, JortnerJJ. Phys. Chem., 1974, 782148.

[49]

LuT, ChenFJ. Comput. Chem., 2012, 33580.

[50]

HumphreyW, DalkeA, SchultenKJ. Mol. Graph., 1996, 1433.

[51]

LiY, ZhangB, RenA, WangD, ZhangJ, NieC, SuZ, ZouLChem. Eng. J., 2024, 501157676.

[52]

GaoY J, ChenW K, WangZ R, FangW H, CuiGPhys. Chem. Chem. Phys., 2018, 2024955.

[53]

LvL, LiuK, YuanK, ZhuY, WangYRSC Adv., 2018, 828421.

[54]

FanJ, ZhangY, ZhangK, LiuJ, JiangG, LinL, WangC KOrg. Electron., 2019, 71113.

[55]

LvL, YuanK, ZhuY, ZuoG, WangYJ. Phys. Chem. A, 2019, 1232080.

[56]

YangJ G, FengX, XieG, LiN, LiJ, SongX-F, LiM D, ZhangJ, ChangX, LiKSci. China Chem., 2024, 674149.

[57]

LvL, NingZ, ZhangY, MengY, TangBInorg. Chem., 2025, 646497.

[58]

LinS, OuQ, WangY, PengQ, ShuaiZJ. Phys. Chem. Lett., 2021, 122944.

[59]

LiP, WangZ, WangS, ZhouC, ZhangY, ZhengC, ChenRJ. Phys. Chem. C, 2021, 12526770.

[60]

LinS, OuQ, PengQ, ShuaiZJ. Chin. Chem. Soc., 2023, 70287.

[61]

SunX W, PengL Y, GaoY J, YeJ T, CuiGJ. Chin. Chem. Soc., 2023, 70680.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/