Controllable Synthesis of JIS-10:Eu3+ Red Phosphor and Performance Optimization of Fluorescent Probe for Antibiotic Detection

Xinyuan Zhang , Xiaoyu Cai , Wenhang Guo , Tan Su , Zhongmin Su

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1186 -1192.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1186 -1192. DOI: 10.1007/s40242-025-5161-2
Article
research-article

Controllable Synthesis of JIS-10:Eu3+ Red Phosphor and Performance Optimization of Fluorescent Probe for Antibiotic Detection

Author information +
History +
PDF

Abstract

A series of Eu3+ doped manganese phosphite (JIS-10:Eu3+) red phosphors was prepared via the hydrothermal method. The regulation of Eu3+ doping concentration on the material structure, luminescence properties, and antibiotic fluorescence sensing characteristics was systematically investigated. Experiments showed that when the Eu3+ doping concentration (molar fraction) was 0.01, the material exhibited the strongest red emission at 617 nm. Under near-ultraviolet excitation at 394 nm, the luminescence intensity of JIS-10:0.01Eu3+ showed a linear relationship with the Eu3+ concentration. When this material was used as a fluorescent probe for tetracycline detection, its fluorescence intensity exhibited a good linear response to tetracycline concentration in the range of 0.1–200 µmol/L, and it showed significant selectivity towards structural analogs, such as sulfadiazine and norfloxacin.

Keywords

Rare-earth / Photoluminescence / Red phosphors / Antibiotic detection

Cite this article

Download citation ▾
Xinyuan Zhang, Xiaoyu Cai, Wenhang Guo, Tan Su, Zhongmin Su. Controllable Synthesis of JIS-10:Eu3+ Red Phosphor and Performance Optimization of Fluorescent Probe for Antibiotic Detection. Chemical Research in Chinese Universities, 2025, 41(5): 1186-1192 DOI:10.1007/s40242-025-5161-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChioH, GuestE E, HobmanJ L, DottoriniT, HirstJ D, StekelD JJ. Molecular Graph. Model., 2023, 123108508.

[2]

DongS, DingY, FengH, XuJ, HanJ, JiangW, WangAWater Res., 2023, 235119876.

[3]

KumarR, LakshmiG B V S, DhimanT K, SinghK, SolankiP RJ. Electroanal. Chem., 2021, 892115266.

[4]

AlmR A, LahiriS DAntibiotics, 2020, 9418.

[5]

MutharaniB, ChenT W, ChenS M, LiuXSens. Actua. B: Chem., 2020, 316128103.

[6]

LiC P, LongW W, LeiZ, GuoL, XieM J, J, ZhuX DChem. Commun., 2020, 5612403.

[7]

WangK, LiL, YangL, GuoJ, WangZ, TangH, MaYPolyhedron, 2022, 226116092.

[8]

WangG D, LiY Z, ShiW J, ZhangB, HouL, WangY YSens. Actua. B: Chem., 2021, 331129377.

[9]

ZhongS F, YangB, LeiH J, XiongQ, ZhangQ Q, LiuF, YingG GSci. Total Environ., 2022, 830154647.

[10]

LiX, LiuF, XiS, XieH, LiJ, LiuGJ. Environ. Chem. Engineering, 2023, 11109699.

[11]

LakshmiG B V S, KondalS, DhimanT K, GuptaP K, SolankiPECS Transactions, 2022, 10718113.

[12]

LakshmiG B V S, PoddarM, DhimanT K, SinghA K, SolankiP RColloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653129819.

[13]

HashmiS Z H, DhimanT K, ChaudharyN, SinghA K, KumarR, SharmaJ G, SolankiP RFront. Nanotech., 2021, 3616186.

[14]

SajwanR K, PandeyS, KumarR, DhimanT K, EreminS A, SolankiP REnviron. Sci.: Nano, 2021, 82693

[15]

LiK, LiD, JiaM, GuoD, DaiM, ZhaoJ, FuZNano Lett., 2025, 25776.

[16]

MilićevićD, HlaváčJChemosensors, 2021, 9359.

[17]

Verma A. K., Dhiman T. K., Lakshmi G. B. V. S., Solanki P., BioRxiv, 2022, 11, 90.

[18]

KimD, YooSChemosensors, 2021, 9318.

[19]

ZhangW, ZhangX, SunJ, LvY, LiX, HouJ, SuZFood Chem., 2025, 4928

[20]

SongJ, LiuX, ZhangX, FanJ, ZhangR, FengXTalanta, 2023, 265124874.

[21]

MaJ X, MaT, QianR, ZhouL, GuoQ, YangJ H, YangQInorg. Chem., 2021, 607937.

[22]

LiY, WangM, YangG, WangY YInorg. Chem., 2023, 624735.

[23]

DangJ, LiM, FangW, WuY, XinS, CaoY, ZhaoHTalanta, 2024, 267125164.

[24]

JiangY, FangX, ZhangZ, GuoX, HuoJ, WangQ, DingBChinese Chem. Lett., 2023, 34108426.

[25]

LiuW, HuangY, JiC, GrimesC A, LiangZ, HuH, ZhouY GACS Sensors, 2024, 9759.

[26]

DengT, HeH, ChenH, PengX, LiH, YanX, LuoLTalanta, 2024, 276126200.

[27]

WangX, LiQ, ZongB, FangX, LiuM, LiZ, OstrikovK KSens. Actua. B: Chem., 2022, 373132701.

[28]

ShaH, YanBTalanta, 2023, 257124326.

[29]

SuT, XingH, LiY, WuJ, SongX, NakanoT, YuJInorg. Chem. Front., 2016, 3924.

[30]

XingH, YangW, SuT, LiY, XuJ, NakanoT, XuRAngew. Chem. Int. Ed., 2010, 492328.

[31]

XingH, LiY, SuT, XuJ, YangW, ZhuE, XuRDalton Transactions, 2010, 391713.

[32]

SuT, XingH Z, XuJ, YuJ H, XuR RInorg. Chem., 2011, 501073.

[33]

WuL, SunS, BaiY, XiaZ, WuL, ChenH, XuJAdv. Optical Mater., 2021, 92100870.

[34]

CaoR, ChenC, ChengF, ChenT, LanB, LiL, WangJJ. Luminescence, 2023, 257119731.

[35]

NiuY, WuF, TengY, HuangY, YangZ, MuZJ. Luminescence, 2024, 275120748.

[36]

TangZ, DuF, ZhaoL, LiuH, LengZ, XieH, WangYLaser & Photonics Rev., 2023, 172200911.

[37]

QiaoJ, ZhangS, ZhouX, ChenW, GautierR, XiaZAdv. Mater., 2022, 342201887.

[38]

NashivochnikovA A, KostyukovA I, RakhmanovaM I, KibisL S, CherepanovaS V, SuprunE AJ. Rare Earths, 2025, 4321.

[39]

WangS, XuY, ChenT, JiangW, LiuJ, ZhangX, WangLChem. Engineering J., 2021, 404125912.

[40]

CaoR, WangJ, ZhongB, ChenT, LanB, ChengF, WangJJ. Phys. Chem. Solids, 2024, 188111925.

[41]

GuoW, ZengL, ZhangX, CaiX, SuT, SuZChem. Res. Chinese Universities, 2025, 41557.

[42]

TengW, DongH, HuC, YangX, WangJ, LiangX, ZhongDJ. Luminescence, 2024, 269120524.

[43]

SaoS, SharmaR, BrahmeN, BisenD P, ThakkarK, RichhariyaT, DubeyK KJ. Electron. Mater., 2025, 542952.

[44]

YaoW, LuG, ZhaoH, HuangD, BaiB, HuangN, XieAOptical Mater., 2024, 157116212.

[45]

LazoryakB I, DikhtyarY Y, SpasskyD A, FedyuninF D, BaryshnikovaO V, PavlovaE T, DeynekoD VMater. Res. Bulletin, 2024, 176112799.

[46]

TanH, LiuB, ChenYJ. Phys. Chem. C, 2012, 1162292.

[47]

DeolK K, MullerGChemPlusChem, 2019, 841796.

[48]

MotorinaA, TananaikoO, KozytskaI, RaksV, BadiaR, Díaz-GarcíaM E, ZaitsevV NSens. Actua. B: Chem., 2014, 200198.

[49]

YuM, YaoX, WangX, LiY, LiGPolymers, 2019, 1199.

[50]

HuangC, LuoY, LiJ, LiuC, ZhouT, DengJAnal. Chem., 2021, 939183.

[51]

ZhuJ, WuY, XueC, ZhangM, ZhangY, ZhangX, DengJChem. Engineering J., 2024, 500156839.

[52]

AttiaM S, YoussefA O, EssawyA A, Abdel-MottalebM S AJ. Luminescence, 2012, 1322741.

[53]

HuX L, GuoY, ZhangJ N, WangX H, FangG Z, WangSChem. Eng. J., 2022, 43314

[54]

WangY, LiangZ, JiangK, LinY, HeD, LiuJ, YuRCeramics International, 2023, 49579.

[55]

OuyangX, LiuR, HuX, LiJ, TangR, JinX, YuRJ. Alloys Comp., 2023, 939168715.

[56]

KongJ, SuH, LiC, ChengS, WangY, RanY, YuRCeramics International, 2023, 4939329.

[57]

XieY, GengX, GuoJ, ShiW, LvQ, KongJ, YuRMater. Research Bulletin, 2022, 146111574.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/