Effective Coactivation of CO2 and CH4 Gases into HCOOH and CH3COOH Realized by Synergistic Effect in Double-atom Catalyst Based on 2D BC3N2

Xiao Wang , Chaozheng He , Chenxu Zhao

Chemical Research in Chinese Universities ›› : 1 -8.

PDF
Chemical Research in Chinese Universities ›› :1 -8. DOI: 10.1007/s40242-025-5155-0
Article
research-article

Effective Coactivation of CO2 and CH4 Gases into HCOOH and CH3COOH Realized by Synergistic Effect in Double-atom Catalyst Based on 2D BC3N2

Author information +
History +
PDF

Abstract

We herein designed a double-atom catalyst based on 2D BC3N2 and calculated the properties of CO2/CH4 coactivation via density functional theory. PtM@2D-BC3N2 catalysts (M denotes Cr, Mo, Ti, V, and W) are first screened based on high binding strength of metal atoms and CH4 caputre ability. In these candidates, the systems with M in IVB and VB subgroups have unfavorable adsorption oritation of *CH3COO (*HCOO) for *CO2-*CH3 (*CO2-*H) combination. In comparison, the systems with M in VIB subgroup are favourable and the reactivity of *CO2-*CH3 (*CO2-*H) combination is decreased with increasing period. Finally, the PtCr@2D-BC3N2 is screened as the optimal catalyst. There exists a synergistic effect between Pt and Cr sites in PtCr@2D-BC3N2: the CH4 can be effectively adsorbed on Cr site and will further be dissociated on Pt site with high reactivity. HCOOH can be produced in the temperature region of 34.84–66.85 °C. While at temperatures higher than 66.85 °C, the selectivity of CH3COOH production is significantly higher than that of HCOOH due to the larger rate constant and ratio of atom utilization. Our study has not only clarified the potential mechanism of CO2/CH4 coactivation for theoretical works but also provided promising candidates for experimental works.

Keywords

CO2/CH4 coactivation / Double-atom catalyst / 2D BC3N2 substrate / CH3COOH production

Cite this article

Download citation ▾
Xiao Wang, Chaozheng He, Chenxu Zhao. Effective Coactivation of CO2 and CH4 Gases into HCOOH and CH3COOH Realized by Synergistic Effect in Double-atom Catalyst Based on 2D BC3N2. Chemical Research in Chinese Universities 1-8 DOI:10.1007/s40242-025-5155-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhou S, Chen K, Huang J, Wang L, Zhang M, Bai B, Liu H, Wang QAppl. Catal. B, 2020, 266: 118513.

[2]

Graves C, Ebbesen S D, Mogensen M, Lackner K SRenew. Sust. Energ. Rev., 2011, 15: 1.

[3]

He C, Wang R, Xiang D, Li X, Fu L, Jian Z, Huo J, Li SAppl. Surf. Sci., 2020, 509: 145392.

[4]

Fu L, Wang R, Zhao C, Huo J, He C, Kim K-H, Zhang WChem. Eng. J., 2021, 414: 128857.

[5]

He C, Wang H, Fu L, Huo J, Zheng Z, Zhao C, An MChin. Chem. Lett., 2021, 33: 990.

[6]

Yang H, He C, Fu L, Huo J, Zhao C, Li X, Song YChin. Chem. Lett., 2021, 32: 3202.

[7]

Zhao Y, Wang H, Han J, Zhu X, Mei D, Ge QACS Catal., 2019, 9: 3187.

[8]

Khettal H, Haroun MF, Boukelkoul MComput. Theor. Chem., 2020, 1186: 112890.

[9]

Li J, Dou L, Gao Y, Hei X, Yu F, Shao TJ. CO2 Util., 2021, 52: 101675.

[10]

Shahzad N, Khan BJ. Mol. Graph. Model, 2021, 105: 107896.

[11]

Zhang T, Yang X, Ge QCatal. Today, 2020, 339: 54.

[12]

Lei H, Wu M, Liu Y, Mo F, Chen J, Ji S, Zou Y, Dong XChin. Chem. Lett., 2021, 32: 2317.

[13]

Ren Y, Liu X, Zhang Z, Shen XPhys. Chem. Chem. Phys., 2021, 23: 15564.

[14]

Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang TNat. Chem., 2011, 3: 634.

[15]

Ren C, Jiang Q, Lin W, Zhang Y, Huang S, Ding KACS Appl. Nano Mater., 2020, 3: 5149.

[16]

Liu J, Li F, Lu J, Li R, Wang Y, Zhang X, Fan C, Zhang RJ. Colloid. Interface Sci., 2021, 603: 17.

[17]

Lesmana H, Zhang Z, Li X, Zhu M, Xu W, Zhang DJ. Energ. Resour. Tech., 2019, 141: 070703.

[18]

Dutra M, Schmal M, Guardani RCatal. Lett., 2018, 148: 3413.

[19]

Kim M, Franklin A D, Martin R, Bian Y, Weaver J F, Asthagiri AJ. Catal., 2020, 383: 181.

[20]

Zhang R, Song L, Liu H, Wang BAppl. Catal. A, 2012, 443: 50.

[21]

Wu J F, Yu S M, Wang W D, Fan Y X, Bai S, Zhang C W, Gao Q, Huang J, Wang WJ. Am. Chem. Soc., 2013, 135: 13567.

[22]

Zhao X, Zhang R, Wang Q, Li D, Wang B, Ling LRSC Adv., 2014, 4: 58631.

[23]

Feng Y, Yin H, Wang A, Xue WJ. Catal., 2015, 326: 26.

[24]

Nie X, Ren X, Tu C, Song C, Guo X, Chen J GChem. Commun., 2020, 56: 3983.

[25]

Tu C, Nie X, Chen J GPhys.Chem.Chem.Phys., 2021, 11: 3384

[26]

Wen G, Wang Q, Zhang R, Li D, Wang BPhys. Chem. Chem. Phys., 2016, 18: 27272.

[27]

Huang H, Yu Y, Zhang MPhys. Chem. Chem. Phys., 2020, 22: 27320.

[28]

Ray K, Sandupatla AS, Deo GInt. J. Quantum Chem., 2021, 121: e26580.

[29]

An W, Zeng X C, Turner C HJ. Chem. Phys., 2009, 131: 174702.

[30]

Gutierrez-Gonzalez A, Torio M E, Busnengo H F, Beck R DTop. Catal., 2019, 62: 859.

[31]

Amaniampong P N, Trinh Q T, Wang B, Borgna A, Yang Y, Mushrif S HAngew. Chem. Int. Ed. Engl., 2015, 54: 8928.

[32]

Liu H, Zhang R, Yan R, Wang B, Xie KAppl. Surf. Sci., 2011, 257: 8955.

[33]

Li K, Jiao M, Wang Y, Wu ZSurf. Sci., 2013, 617: 149.

[34]

Li K, Zhou Z, Wang Y, Wu ASurf. Sci., 2013, 612: 63.

[35]

Tian B, Liu T, Yang Y, Li K, Wu Z, Wang YAppl. Surf. Sci., 2018, 427: 953.

[36]

He F, Li K, Xie G, Wang Y, Jiao M, Tang H, Wu ZAppl. Surf. Sci., 2016, 360: 826.

[37]

Guo Z H, Yan X H, Xiao YPhys. Rev. A, 2010, 374: 1534

[38]

Liu H, Teng B, Fan M, Wang B, Zhang Y, Harris H GFuel, 2014, 123: 285.

[39]

Zhao Y, Cui C, Han J, Wang H, Zhu X, Ge QJ.Am.Chem.Soc., 2016, 138: 10191.

[40]

Rabie A M, Betiha M A, Park S EAppl. Catal. B, 2017, 215: 50.

[41]

Yu J, He C, Pu C, Fu L, Zhou D, Xie K, Huo J, Zhao C, Yu LChin. Chem. Lett., 2021, 32: 3149.

[42]

Nelson N C, Chen L X, Meira D, Kevarik L, Szanyi JAngew. Chem., 2020, 59: 17657.

[43]

Wang G CACS Appl. Mater. Interfaces, 2025, 17: 11236.

[44]

Zhang J, An WCatal. Sci. Technol., 2022, 12: 6609.

[45]

Liu H M, Huang Q L, An WJ. Energy Chem., 2021, 61: 507.

[46]

Li Y, An WJ. Energy Chem., 2023, 80: 350.

[47]

Kresse G, Joubert DPhys. Rev. B, 1999, 59: 1758.

[48]

Kresse FPhys. Rev. B, 1996, 54: 11169.

[49]

BlochlPhys. Rev. B, 1994, 50: 17953.

[50]

Perdew J P, Burke K, Ernzerhof MPhys. Rev. Lett., 1996, 77: 3865.

[51]

Ambrosetti A, Reilly A M, Tkatchenko A, Di Stasio R AJr.J. Chem Phys., 2014, 140: 18A508.

[52]

Monkhorst H J, Pack J DPhys. Rev. B, 1976, 13: 5188.

[53]

Monkhorst H J, Pack J DPhys. Rev. B, 1977, 16: 1748.

[54]

Henkelman G, Arnaldsson AComp. Mater. Sci., 2006, 36: 354.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

/