Effect of Dimethyl Sulfoxide on Lysozyme Structural Stability During Electrospray Ionization Revealed by Molecular Dynamics Simulations

Zhuoyuan Du , Moujun Luan , Zhuanghao Hou , Guangming Huang

Chemical Research in Chinese Universities ›› : 1 -8.

PDF
Chemical Research in Chinese Universities ›› :1 -8. DOI: 10.1007/s40242-025-5154-1
Article
research-article

Effect of Dimethyl Sulfoxide on Lysozyme Structural Stability During Electrospray Ionization Revealed by Molecular Dynamics Simulations

Author information +
History +
PDF

Abstract

Dimethyl sulfoxide (DMSO), employed as a solvent in specific electrospray ionization (ESI) mass spectrometry experimental contexts for protein characterization, serves as a two-step structure modulator. The presence of DMSO at low concentrations can protect protein structure during the electrospray process, while DMSO at higher concentrations would disrupt protein structure. However, these DMSO concentration-mediated effects on protein structure remain unclear. Herein, we employed molecular dynamics (MD) simulations for probing the effect on protein structure at different DMSO concentrations. Our findings showed a transitional tend to decrease the charge states of lysozyme due to the evaporation behavior of DMSO clusters and provide direct evidence of concentration-mediated variations on secondary structure, hydrogen bonds, and salt bridges of lysozyme. These findings revealed protective effect of DMSO-protein interactions on the structure of lysozyme at low concentrations, but a destructive effect at high concentrations. Our study offers novel insights into the process that DMSO concentrationmediated conformational modulation of the protein.

Keywords

Electrospray ionization / Dimethyl sulfoxide (DMSO) / Molecular dynamics / Protein structure

Cite this article

Download citation ▾
Zhuoyuan Du, Moujun Luan, Zhuanghao Hou, Guangming Huang. Effect of Dimethyl Sulfoxide on Lysozyme Structural Stability During Electrospray Ionization Revealed by Molecular Dynamics Simulations. Chemical Research in Chinese Universities 1-8 DOI:10.1007/s40242-025-5154-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chan D S H, Kavanagh M E, Mclean K J, Munro A W, Matak-Vinkovic D, Coyne A G, Abell CAnal. Chem., 2017, 89: 9976.

[2]

Judák P, Grainger J, Goebel C, Van Eenoo P, Deventer KJ. Am. Soc. Mass. Spectrom., 2017, 28: 1657.

[3]

Eremin D B, Fokin V VJ. Am. Soc. Mass. Spectrom., 2022, 33: 203.

[4]

Roy S, Jana B, Bagchi BJ. Chem. Phys., 2012, 136: 115103.

[5]

Landreh M, Alvelius G, Johansson J, Jörnvall HAnal. Chem., 2014, 86: 4135.

[6]

Chan D S H, Matak-Vinkovic D, Coyne A G, Abell CChemistryselect, 2016, 1: 5686.

[7]

Das D K, Patra A, Mitra R KBiophys. Chem., 2016, 216: 31.

[8]

Zhao B, Zhuang X Y, Bian X Y, Pi Z F, Liu S, Liu Z Q, Song F RJ. Mass Spectrom., 2019, 54: 351.

[9]

Voets I K, Cruz W A, Moitzi C, Lindner P, Arêas E P G, Schurtenberger PJ. Phys. Chem. B, 2010, 114: 11875.

[10]

Grandori RJ. Mass Spectrom., 2003, 38: 11.

[11]

Tjernberg A, Markova N, Griffiths W J, Hallén DJ. Biomol. Screening, 2006, 11: 131.

[12]

Winston R L, Fitzgerald M CMass Spectrom. Rev., 1997, 16: 165.

[13]

Hamdy O M, Julian R RJ. Am. Soc. Mass. Spectrom., 2012, 23: 1.

[14]

Zhu XPrecis. Chem., 2023, 1: 192.

[15]

Daub C D, Cann N MAnal. Chem., 2011, 83: 8372.

[16]

Consta S, Oh M I, Kwan V, Malevanets AJ. Am. Soc. Mass. Spectrom., 2018, 29: 2287.

[17]

Oh M I, Consta SJ. Phys. Chem. Lett., 2017, 8: 80.

[18]

Konermann L, Ahadi E, Rodriguez A D, Vahidi SAnal. Chem., 2013, 85: 2.

[19]

Metwally H, Mcallister R G, Popa V, Konermann LAnal. Chem., 2016, 88: 5345.

[20]

Abraham M, Apostolov R, Barnoud J, Bauer P, Blau C, Bonvin A, Chavent M, Chodera J, Condic-Jurkic K, Delemotte L, Grubmüller H, Howard R J, Jordan E J, Lindahl E, Ollila O H S, Selent J, Smith D G A, Stansfeld P J, Tiemann J K S, Trellet M, Woods C, Zhmurov AJ. Chem. Inf. Model., 2019, 59: 4093.

[21]

Huang J, Mackerell A DJ. Comput. Chem., 2013, 34: 2135.

[22]

Valle J V L, Mendonça B H S, Barbosa M C, Chacham H, Moraes E EJ. Phys. Chem. B, 2024, 128: 1091.

[23]

Maenaka K, Matsushima M, Song H, Sunada F, Watanabe K, Kumagai IJ. Mol. Biol., 1995, 247: 281.

[24]

Martínez L, Andrade R, Birgin E G, Martínez J MJ. Comput. Chem., 2009, 30: 2157.

[25]

Mcallister R G, Metwally H, Sun Y, Konermann LJ. Am. Chem. Soc., 2015, 137: 12667.

[26]

Metwally H, Duez Q, Konermann LAnal. Chem., 2018, 90: 10069.

[27]

Luan M J, Hou Z H, Huang G MJ. Phys. Chem. B, 2022, 126: 144.

[28]

Luan M J, Hou Z H, Zhang B C, Ma L K, Yuan S M, Liu Y Z, Huang G MAnal. Chem., 2023, 95: 8798.

[29]

Aliyari E, Konermann LAnal. Chem., 2020, 92: 10807.

[30]

Iribarne J V, Thomson B AJ. Chem. Phys., 1976, 64: 2287.

[31]

Sterling H J, Prell J S, Cassou C A, Williams E RJ. Am. Soc. Mass. Spectrom., 2011, 22: 1178.

[32]

Lu P, Zhao G, Zhang X L, Yin J G, Bao J FChem. Res. Chinese Universities, 2016, 32: 100.

[33]

Kebarle P, Verkerk U HMass Spectrom. Rev., 2009, 28: 898.

[34]

Wang H, Liu X, Zhao S W, Fu G, Zhen W Q, Yang L, Zhang J XPrecis. Chem., 2023, 2: 40.

[35]

Smith R D, Loo J A, Loo R R O, Busman M, Udseth H RMass Spectrom. Rev., 1991, 10: 359.

[36]

Fenn J B, Mann M, Meng C K, Wong S F, Whitehouse C MMass Spectrom. Rev., 1990, 9: 37.

[37]

Hall Z, Robinson C VJ. Am. Soc. Mass. Spectrom., 2012, 23: 1161.

[38]

Ali S A, Hassan M I, Islam A, Ahmad FCurr. Protein Pept. Sci., 2014, 15: 456.

[39]

Durham E, Dorr B, Woetzel N, Staritzbichler R, Meiler JJ. Mol. Model., 2009, 15: 1093.

[40]

Kim D, Wagner N, Wooding K, Clemmer D E, Russell D HJ. Am. Chem. Soc., 2017, 139: 2981.

[41]

Fomenkova N P, Nevskaya N A, Nikulin A D, Nikonov S VMol. Biol., 1998, 32: 265

[42]

Lin L, Pinker R J, Kallenbach N RBiochemistry, 1993, 32: 12638.

[43]

Liu H L, Hsu C MJ. Chin. Chem. Soc., 2003, 50: 1235.

[44]

Caflisch A, Karplus MProc. Natl. Acad. Sci. USA, 1994, 91: 1746.

[45]

Meuzelaar H, Vreede J, Woutersen SBiophys. J., 2016, 110: 2328.

[46]

Ragone RProtein Sci., 2001, 10: 2075.

[47]

Newberry R W, Raines R TNat. Chem. Biol., 2016, 12: 1084.

[48]

Vogt G, Argos PFolding Des., 1997, 2: S40.

[49]

Patriksson A, Marklund E, Van Der Spoel DBiochemistry, 2007, 46: 933.

[50]

Hayashi T, Inoue M, Yasuda S, Petretto E, Skrbic T, Giacometti A, Kinoshita MJ. Chem. Phys., 2018, 149: 045105.

[51]

Nakagawa H, Tamada TFront. Chem., 2021, 9: 738077.

[52]

Yasuda S, Oshima H, Kinoshita MJ. Chem. Phys., 2012, 137: 135103.

[53]

Kumar S, Nussinov RChembiochem, 2002, 3: 604.

[54]

Ban X F, Lahiri P, Dhoble A S, Li D, Gu Z B, Li C M, Cheng L, Hong Y, Li Z F, Kaustubh BComput. Struct. Biotechnol. J., 2019, 17: 895.

[55]

Kumar S, Tsai C J, Ma B Y, Nussinov RJ. Biomol. Struct. Dyn., 2000, 17: 79.

[56]

Lee C W, Wang H J, Hwang J K, Tseng C PPlos One, 2014, 9: e112751.

[57]

Pluharová E, Marsalek O, Schmidt B, Jungwirth PJ. Chem. Phys., 2012, 137: 185101.

[58]

Mason P E, Jungwirth P, Duboué-Dijon EJ. Phys. Chem. Lett., 2019, 10: 3254.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

/