Intelligent Algorithm-guided Parameter Learning for the ABEEM Model

Peiran Meng , Zhuo You , Kaixuan Guo , Chunyang Yu , Lidong Gong , Zhongzhi Yang

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1114 -1120.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1114 -1120. DOI: 10.1007/s40242-025-5153-2
Article
research-article

Intelligent Algorithm-guided Parameter Learning for the ABEEM Model

Author information +
History +
PDF

Abstract

Accurate modeling of charge distribution plays a vital role in molecular simulations, electrostatic energy evaluation, and mechanistic analysis. The atom-bond electronegativity equalization method (ABEEM) provides a physically interpretable framework for computing atomic and electronic site charges by partitioning molecular space into atoms, bonds, and lone-pair regions. However, conventional ABEEM parameterization relies heavily on manual tuning, limiting its adaptability and predictive accuracy. In this work, an automated parameter learning strategy for ABEEM was proposed, guided by intelligent optimization algorithms and formulated within a goal programming framework. The framework systematically calibrates the key parameters of multiple types of charge sites. A chemically diverse training set including proteins, lipids, and nucleotides was constructed, and a dual-level objective function was designed to improve accuracy at both site and atomic levels. This approach significantly enhances the predictive performance and consistency of the ABEEM model across complex biomolecular systems. It also eliminates human bias and provides a scalable and generalizable pathway for force field development.

Keywords

Charge distribution / Atom-bond electronegativity equalization method (ABEEM) / Intelligent optimization

Cite this article

Download citation ▾
Peiran Meng, Zhuo You, Kaixuan Guo, Chunyang Yu, Lidong Gong, Zhongzhi Yang. Intelligent Algorithm-guided Parameter Learning for the ABEEM Model. Chemical Research in Chinese Universities, 2025, 41(5): 1114-1120 DOI:10.1007/s40242-025-5153-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AlbaughA, BoatengH A, BradshawR T, DemerdashO N, DziedzicJ, MaoY, MargulD T, SwailsJ, ZengQ, CaseD A, EastmanPJ. Phys. Chem. B, 2016, 1209811.

[2]

AzimiA, JavanbakhtMAnal. Chim. Acta, 2014, 812184.

[3]

TsaiK C, ChenY C, HsiaoN W, WangC L, LinC L, LeeY C, LiM, WangBEur. J. Med. Chem., 2010, 451544.

[4]

PatelS, BrooksC LIII.Mol. Simul., 2006, 32231.

[5]

PatelS, MackerellA D Jr, BrooksC LIII.J. Comput. Chem., 2004, 251504.

[6]

MöllhoffM, SternbergUMol. Model. Annu., 2001, 790.

[7]

Zhang, J., Lu, L., Yu, R., Liu, L., Wang, L., Liu, C., Gong L. D., Yang, Z. Z., Interdisciplin. Sci. Comput. Life Sci., 2025, doi: https://doi.org/10.1007/s12539-025-00746-y.

[8]

MahaN, SamraM M, LaraibN, IrfanA, AzamM, BasraM A RComput. Theor. Chem., 2023, 1230114346.

[9]

WangL, YuSJ. Photopolym. Sci. Tec., 2000, 13247.

[10]

FawcettW R, ChavisG J, HromadováMElectrochim. Acta, 2008, 536787.

[11]

KritikosE, GiustiAJ. Phys. Chem. A, 2020, 12410705.

[12]

SoyemiA, SzilvásiTJ. Phys. Chem. A, 2022, 1261905.

[13]

YangZ Z, WangC SJ. Phys. Chem. A, 1997, 1016315.

[14]

WangC S, LiS M, YangZ ZJ. Mol. Struct. (THEOCHEM), 1998, 430191.

[15]

YangZ Z, WangC, TangASci. China Ser. B: Chem., 1998, 41331.

[16]

YangZ Z, WangCSci. China Ser. B: Chem., 2000, 43187.

[17]

WangC S, YangZ ZJ. Chem. Phys., 1999, 1106189.

[18]

CongY, YangZ Z, WangC SChem. Phys. Lett., 2002, 35759.

[19]

YangZ Z, LiY, GongL D, ZhaoD XChem. J. Chinese Universities, 2009, 301600

[20]

LiX, YangZ ZJ. Phys. Chem. A, 2005, 1094102.

[21]

LiuY, WangF F, YuC Y, LiuC, GongL D, YangZ ZActa Phys. Chim. Sin., 2011, 27379.

[22]

ZhangQ, YangZ ZChem. Phys. Lett., 2005, 403242.

[23]

LiuC, RenY, GaoX Q, DuX, YangZ ZJ. Comput. Chem., 2022, 432139.

[24]

YuC Y, YuY, GongL D, YangZ ZTheor. Chem. Acc., 2012, 1311098.

[25]

WangX Y, LiuL L, MengP R, ZhaoJ, WangL, LiuC, GongL D, YangZ ZChem. Theory Comput., 2025, 216933.

[26]

AgrawalV, ChandwaniV, NagarRINROADS: An Int. J. Jaipur Natl. Univ., 2014, 3173

[27]

AgrawalS, SilakariS, AgrawalJMol. Inform., 2015, 34725.

[28]

JansonS, MerkleD, MiddendorfMAppl. Soft Comput., 2008, 8666.

[29]

TayK L, YangW M, ZhaoF Y, LinQ J, WuS HEnergy Fuels, 2019, 34936.

[30]

FaheemA B, KimJ Y, BaeS E, LeeK KJ. Mol. Liquids, 2021, 337116579.

[31]

ŞAHİNM, AtavÜ, TomakMTurkish J. Phys., 2006, 30253

[32]

KennedyJ, EberhartRProc. ICNN’95: Int. Conf. Neural Netw., 1995, 41942

[33]

FrischM J, TrucksG W, SchlegelH B, ScuseriaG E, RobbM A, CheesemanJ R, ScalmaniG, BaroneV, PeterssonG A, NakatsujiH, LiX, CaricatoM, MarenichA V, BloinoJ, JaneskoB G, GompertsR, MennucciB, HratchianH P, OrtizJ V, IzmaylovA F, SonnenbergJ L, Williams-YoungD, DingF, LippariniF, EgidiF, GoingsJ, PengB, PetroneA, HendersonT, RanasingheD, ZakrzewskiV G, GaoJ, RegaN, ZhengG, LiangW, HadaM, EharaM, ToyotaK, FukudaR, HasegawaJ, IshidaM, NakajimaT, HondaY, KitaoO, NakaiH, VrevenT, ThrossellK, MontgomeryJ A Jr, PeraltaJ E, OgliaroF, BearparkM J, HeydJ J, BrothersE N, KudinK N, StaroverovV N, KeithT A, KobayashiR, NormandJ, RaghavachariK, RendellA P, BurantJ C, IyengarS S, TomasiJ, CossiM, MillamJ M, KleneM, AdamoC, CammiR, OchterskiJ W, MartinR L, MorokumaK, FarkasO, ForesmanJ B, FoxD JGaussian 16, 2016, Wallingford CT. Gaussian, Inc..

[34]

KimS, ChenJ, ChengT, GindulyteA, HeJ, HeS, LiQ, ShoemakerB A, ThiessenP A, YuB, ZaslavskyLNucleic Acids Res., 2025, 53D1516.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/