Calculation of the Green’s Function on Near-term Quantum Computers via Cartan Decomposition

Lingyun Wan , Jie Liu , Jinlong Yang

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1029 -1036.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1029 -1036. DOI: 10.1007/s40242-025-5149-y
Article
research-article

Calculation of the Green’s Function on Near-term Quantum Computers via Cartan Decomposition

Author information +
History +
PDF

Abstract

Accurate computation of the Green’s function is crucial for connecting experimental observations to the underlying quantum states. A major challenge in evaluating the Green’s function in the time domain is the efficient simulation of quantum state evolution under a given Hamiltonian, a task that becomes exponentially complex for strongly correlated systems on classical computers. Quantum computing provides a promising pathway to overcome this challenge by enabling efficient simulation of the time evolution operator. However, for near-term quantum devices with limited coherence times and fidelity, the deep quantum circuits required to implement time-evolution operators present a significant challenge for practical applications. In this work, we introduce an efficient algorithm for computing Green’s functions via Cartan decomposition, which requires only fixed-depth quantum circuits for arbitrarily long time simulations. Additionally, analytical gradients are formulated to accelerate the Cartan decomposition by leveraging a unitary transformation in the factorized form. The new algorithm is applied to simulating longtime Green’s functions for the Fermi-Hubbard and transverse-field Ising models, extracting the spectral functions through Fourier transformation.

Keywords

Quantum computing / Green’s function / Cartan decomposition / Time evolution operator

Cite this article

Download citation ▾
Lingyun Wan, Jie Liu, Jinlong Yang. Calculation of the Green’s Function on Near-term Quantum Computers via Cartan Decomposition. Chemical Research in Chinese Universities, 2025, 41(5): 1029-1036 DOI:10.1007/s40242-025-5149-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FeynmanR PInt. J. Theor. Phys., 1982, 21467.

[2]

DuJ, XuN, PengX, WangP, WuS, LuDPhys. Rev. Lett., 2010, 104030502.

[3]

PeruzzoA, McCleanJ, ShadboltP, YungM-H, ZhouX-Q, LoveP J, Aspuru-GuzikA, O’BrienJ LNat. Commun., 2014, 54213.

[4]

O’MalleyP J J, BabbushR, KivlichanI D, RomeroJ, McCleanJ R, BarendsR, KellyJ, RoushanP, TranterA, DingN, CampbellB, ChenY, ChenZ B, ChiaroA, DunsworthA G, FowlerE, Jeffrey LuceroE, MegrantA, MutusJ Y, NeeleyM, NeillC, QuintanaC, SankD, VainsencherA, WennerJ, WhiteT C, CoveneyP V, LoveP J, NevenH, Aspuru-GuzikA, MartinisJ MPhys. Rev. X, 2016, 6031007

[5]

KandalaA, MezzacapoA, TemmeK, TakitaM, BrinkM, ChowJ M, GambettaJ MNature, 2017, 549242.

[6]

HempelC, MaierC, RomeroJ, McCleanJ, MonzT, ShenH, JurcevicP, LanyonB P, LoveP, BabbushR, Aspuru-GuzikA, BlattR, RoosC FPhys. Rev. X, 2018, 8031022

[7]

AruteF, AryaK, BabbushR, BaconD, BardinJ C, BarendsR, BoixoS, BroughtonM, BuckleyB B, BuellD A, BurkettB, BushnellN, ChenY, ChenZ, ChiaroB, CollinsR, CourtneyW, DemuraS, DunsworthA, FarhiE, FowlerA, FoxenB, GidneyC, GiustinaM, GraffR, HabeggerS, HarriganM P, HoA, HongS, HuangT, HugginsW J, IoffeL, IsakovS V, JeffreyE, JiangZ, JonesC, KafriD, KechedzhiK, KellyJ, KimS, KlimovP V, KorotkovA, KostritsaF, LandhuisD, LaptevP, LindmarkM, LuceroE, MartinO, MartinisJ M, McCleanJ R, McEwenM, MegrantA, MiX, MohseniM, MruczkiewiczW, MutusJ, NaamanO, NeeleyM, NeillC, NevenH, NiuM Y, O’BrienT E, OstbyE, PetukhovA, PuttermanH, QuintanaC, RoushanP, RubinN C, SankD, SatzingerK J, SmelyanskiyV, StrainD, SungK J, SzalayM, TakeshitaT Y, VainsencherA, WhiteT, WiebeN, YaoZ J, YehandP, ZalcmanAScience, 2020, 3691084.

[8]

CaoY, RomeroJ, OlsonJ P, DegrooteM, JohnsonP D, KieferováM, KivlichanI D, MenkeT, PeropadreB, SawayaN P D, SimS, VeisL, Aspuru-GuzikAChem. Rev., 2019, 11910856.

[9]

McArdleS, EndoS, Aspuru-GuzikA, BenjaminS C, YuanXRev. Mod. Phys., 2020, 92015003.

[10]

ZhongH-S, WangH, DengY-H, ChenM-C, PengL-C, LuoY-H, QinJ, WuD, DingX, HuY, HuP, YangX-Y, ZhangW-J, LiH, LiY, JiangX, GanL, YangG, YouL, WangZ, LiL, LiuN-L, LuC-Y, PanJ-WScience, 2020, 3701460.

[11]

CerezoM, ArrasmithA, BabbushR, BenjaminS C, EndoS, FujiiK, McCleanJ R, MitaraiK, YuanX, CincioL, ColesP JNat. Rev. Phys., 2021, 3625.

[12]

LiuJ, FanY, LiZ, YangJChem. Soc. Rev., 2022, 513263.

[13]

ShangH, ShenL, FanY, XuZ, GuoC, LiuJ, ZhouW, MaH, LinR, YangY, LiF, WangZ, ZhangY, LiZProceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, 2022

[14]

HugginsW J, O’GormanB A, RubinN C, ReichmanD R, BabbushR, LeeJNature, 2022, 603416.

[15]

Robledo-MorenoJ, MottaM, HaasH, Javadi-AbhariA, JurcevicP, KirbyW, MartielS, SharmaK, SharmaS, ShirakawaT, SitdikovI, SunR-Y, SungK J, TakitaM, TranM C, YunokiS, MezzacapoASci. Adv., 2025, 11eadu9991.

[16]

FetterA L, WaleckaJ DQuantum Theory of Many-particle Systems, 2012, North Chelmsford. Courier Corporation.

[17]

WilliamsA R, FeibelmanP J, LangN DPhys. Rev. B, 1982, 265433.

[18]

KotliarG, SavrasovS Y, HauleK, OudovenkoV S, ParcolletO, MarianettiC ARev. Mod. Phys., 2006, 78865.

[19]

McClainJ, LischnerJ, WatsonT, MatthewsD A, RoncaE, LouieS G, BerkelbachT C, ChanG K-LPhys. Rev. B, 2016, 93235139.

[20]

NakanishiK M, MitaraiK, FujiiKPhys. Rev. Res., 2019, 1033062.

[21]

EndoS, KurataI, NakagawaY OPhys. Rev. Res., 2020, 2033281.

[22]

ParrishR M, HohensteinE G, McMahonP L, MartínezT JPhys. Rev. Lett., 2019, 122230401.

[23]

RizzoJ, LibbiF, TacchinoF, OllitraultP J, MarzariN, TavernelliIPhys. Rev. Res., 2022, 4043011.

[24]

OllitraultP J, KandalaA, ChenC-F, BarkoutsosP K, MezzacapoA, PistoiaM, SheldonS, WoernerS, GambettaJ M, TavernelliIPhys. Rev. Research, 2020, 2043140.

[25]

BakerT EPhys. Rev. A, 2021, 103032404.

[26]

Jamet F., Agarwal A., Lupo C., Browne D. E., Weber C., Rungger I., arXiv preprint arXiv:2105.13298, 2021.

[27]

CaiX, FangW-H, FanH, LiZPhys. Rev. Res., 2020, 2033324.

[28]

HuangK, CaiX, LiH, GeZ-Y, HouR, LiH, LiuT, ShiY, ChenC, ZhengD, XuK, LiuZ-B, LiZ, FanH, FangW-HJ. Chem. Theory Comput., 2022, 139114

[29]

ChenH, NusspickelM, TillyJ, BoothG HPhys. Rev. A, 2021, 104032405.

[30]

KökcüE, LabibH, FreericksJ, KemperA FNat. Commun., 2024, 153881.

[31]

BerryD W, AhokasG, CleveR, SandersB CCommun. Math Phys., 2007, 270359.

[32]

RoggeroA, CarlsonJPhys. Rev. C, 2019, 100034610.

[33]

KosugiT, MatsushitaY-IPhys. Rev. A, 2020, 101012330.

[34]

BerryD W, ChildsA M, CleveR, KothariR, SommaR DPhys. Rev. Lett., 2015, 114090502.

[35]

PreskillJQuantum, 2018, 279.

[36]

LiY, BenjaminS CPhys. Rev. X, 2017, 7021050

[37]

EndoS, SunJ, LiY, BenjaminS C, YuanXPhys. Rev. Lett., 2020, 125010501.

[38]

LibbiF, RizzoJ, TacchinoF, MarzariN, TavernelliIPhys. Rev. Res., 2022, 4043038.

[39]

SakuraiR, MizukamiW, ShinaokaHPhys. Rev. Res., 2022, 4023219.

[40]

YaoY-X, GomesN, ZhangF, WangC-Z, HoK-M, IadecolaT, OrthP PPRX Quantum, 2021, 2030307.

[41]

GyawaliG, LawlerM JPhys. Rev. A, 2022, 105012413.

[42]

MootzM, IadecolaT, YaoY-XJ. Chem. Theory Comput., 2024, 208689.

[43]

KökcüE, SteckmannT, WangY, FreericksJ K, DumitrescuE F, KemperA FPhys. Rev. Lett., 2022, 129070501.

[44]

SteckmannT, KeenT, KökcüE, KemperA F, DumitrescuE F, WangYPhys. Rev. Res., 2023, 5023198.

[45]

GrimsleyH R, EconomouS E, BarnesE, MayhallN JNat. Commun., 2019, 101.

[46]

HallB CLie Groups, Lie Algebras, and Representations, 2013, New York. Springer New York. 333

[47]

KhanejaN, GlaserS JChem. Phys., 2001, 26711.

[48]

JordanP, WignerEZ. Phys., 1928, 47631.

[49]

AharonovD, JonesV, LandauZProceedings of the Thirty-eighth Annual ACM Symposium on Theory of Computing, 2006427.

[50]

GutzwillerM CPhys. Rev. Lett., 1963, 10159.

[51]

KanamoriJProg. Theor. Phys., 1963, 30275.

[52]

HubbardJProceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1963, 276238

[53]

McCleanJ R, RubinN C, SungK J, KivlichanI D, Bonet-MonroigX, CaoY, DaiC, FriedE S, GidneyC, GimbyB, GokhaleP, HänerT, HardikarT, HavlíčekV, HiggottO, HuangC, IzaacJ, JiangZ, LiuX, McArdleS, NeeleyM, O’BrienT, O’GormanB, OzfidanI, RadinM D, RomeroJ, SawayaN P D, SenjeanB, SetiaK, SimS, SteigerD S, SteudtnerM, SunQ, SunW, WangD, ZhangF, BabbushRQuantum Sci. Technol., 2020, 5034014.

[54]

MottN FRev. Mod. Phys., 1968, 40677.

[55]

MeindersM, EskesH, SawatzkyGPhys. Rev. B, 1993, 483916.

[56]

Radicevic D., arXiv preprint arXiv:1809.07757, 2018.

[57]

McDonough B. T., Yin C., Lucas A., Zhang C., arXiv preprint arXiv:2502.02652, 2025.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

74

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/