A High-pressure NMR Tube for PFG Diffusion Studies: Revealing the Specific Confinement in RHO Zeolite

Caiyi Lou , Fangxiu Ye , Shutao Xu , Yingxu Wei , Zhongmin Liu

Chemical Research in Chinese Universities ›› : 1 -8.

PDF
Chemical Research in Chinese Universities ›› :1 -8. DOI: 10.1007/s40242-025-5145-2
Article
research-article

A High-pressure NMR Tube for PFG Diffusion Studies: Revealing the Specific Confinement in RHO Zeolite

Author information +
History +
PDF

Abstract

Diffusion is ubiquitous in nature and many technological processes, particularly in catalysis and gas separations using nanoporous materials. Interpreting the loading dependence of the self-diffusion coefficient (Dself) of guest molecules in nanopores is imperative to understanding diffusion mechanisms. Pulse gradient field (PFG) NMR is a powerful technique for measuring the Dself of target molecules under various pressures. However, the maximum pressures of commercial NMR tubes (usually<14.0 bar, 1 bar= 101325 Pa) are not high enough to investigate in realistic conditions or a wider pressure range. Herein, we developed a high-pressure tube (HP tube, up to 120 bar) for accurate Dself measurements, particularly in nanoporous material systems, featuring rapid sample loading and recovery. This HP tube bypasses the pressure-resistant design of diameter reduction and is equipped with a suite of sample fill tools, facilitating quick solids loading and non-destructive recovery. Its application to methane diffusion in DNL-6 (RHO) molecular sieve reveals the specifically confined diffusion, highlighting the confinement effect of the d8r structure. The HP NMR tube was confirmed to be a safe and reliable solution for high-pressure diffusion investigation via PFG NMR. This contribution advances molecular transport understanding and enables researchers to optimize materials for energy and catalysis technologies.

Keywords

Diffusion / Porous material / Pulse gradient field (PFG) NMR / High-pressure NMR tube / Confinement effect

Cite this article

Download citation ▾
Caiyi Lou, Fangxiu Ye, Shutao Xu, Yingxu Wei, Zhongmin Liu. A High-pressure NMR Tube for PFG Diffusion Studies: Revealing the Specific Confinement in RHO Zeolite. Chemical Research in Chinese Universities 1-8 DOI:10.1007/s40242-025-5145-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu Z Q, Lou C Y, Yuan J M, Tang X M, Fan Y Z, Qi J, Zhang R, Peng P, Liu G L, Xu S T, Zheng A MJ. Am. Chem. Soc., 2025, 147: 6126.

[2]

Brandani S, Hwang S, Kärger J, Mangano ENat. Commun., 2024, 15: 5721.

[3]

Zuo P P, Ye C C, Jiao Z R, Luo J, Fang J K, Schubert U S, McKeown N B, Liu T L, Yang Z J, Xu T WNature, 2023, 617: 299.

[4]

Yuan J M, Gao M B, Liu Z Q, Tang X M, Tian Y, Ma G, Ye M, Zheng A MNat. Commun., 2023, 14: 1735.

[5]

Karger J, Freude D, Haase JProcesses, 2018, 6: 147.

[6]

Karger J, Ruthven D MNew J. Chem., 2016, 40: 4027.

[7]

Karger J, Valiullin RChem. Soc. Rev., 2013, 42: 4172.

[8]

Chmelik C, Kaerger JChem. Soc. Rev., 2010, 39: 4864.

[9]

Karger J, Pfeifer HZeolites, 1987, 7: 90.

[10]

Cotts R M, Hoch M J R, Sun T, Makert J TJ. Magn. Reson., 1989, 83: 252

[11]

Jakobtorweihen S, Verbeek M G, Lowe C P, Keil F J, Smit BPhys. Rev. Lett., 2005, 95: 044501.

[12]

Beerdsen E, Dubbeldam D, Smit BPhys. Rev. Lett., 2006, 96: 044501.

[13]

Beerdsen E, Smit B, Dubbeldam DPhys. Rev. Lett., 2004, 93: 248301.

[14]

Dubbeldam D, Beerdsen E, Vlugt T J H, Smit BJ. Chem. Phys., 2005, 122: 224712.

[15]

Benedek G B, Purcell E MJ. Chem. Phys., 1954, 22: 2003.

[16]

Horvath I T, Millar J MChem. Rev., 1991, 91: 1339.

[17]

Ballard L, Reiner C, Jonas JJ. Magn. Res., 1996, 123: 81.

[18]

Ballard L, Yu A, Reiner C, Jonas JJ. Magn. Res., 1998, 133: 190.

[19]

Jonas JBiochem. Biophys. Acta, 2002, 1595: 145

[20]

Jiri JHigh-Pressure Studies Using NMR Spectroscopy, 2010Cambridge, MA, USAAcademic Press (Elsevier Ltd.)

[21]

Lou C Y, Zhang W N, Ma C, Fan B H, Xu S T, Gao S S, Guo P, Wie Y X, Liu Z MChemCatChem, 2021, 13: 1299.

[22]

Gao S S, Yuan J M, Liu Z Q, Lou C Y, Yu Z X, Xu S T, Zheng A M, Wu P F, Wei Y X, Liu Z MJ. Phys. Chem. C, 2021, 125: 6832.

[23]

Gao S S, Liu Z Q, Xu S T, Zheng A M, Wu P F, Li B, Yuan X S, Wei Y X, Liu Z MJ. Catal., 2019, 377: 51.

[24]

Su X, Tian P, Li J, Zhang Y, Meng S, He Y, Fan D, Liu ZMicropor. Mesop. Mater., 2011, 144: 113.

[25]

Yan N, Wang L, Liu X, Wu P F, Sun T T, Xu S T, Han J F, Guo P, Tian P, Liu Z MMater. Chem. A, 2018, 6: 24186.

[26]

Karger JChemphyschem, 2015, 16: 24.

[27]

Wang N, Zhi Y C, Wei Y X, Zhang W N, Liu Z Q, Huang J D, Sun T T, Xu S T, Lin S F, He Y L, Zheng A M, Liu Z MNat. Commun., 2020, 11: 1079.

[28]

Karger JChemphyschem, 2015, 16: 24.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

/