Construction of WO3/CN Z-Type Heterojunction Containing Oxygen Vacancies to Enhance Formaldehyde Degradation Efficiency and Photocatalytic Performance

Wei Shang , Jiahui Chen , Jianguo Qiao , Xiaohang Yang , Pengpeng Wang , Dumin Li , Tianxiang Li , Shiyu Zhou , Ruokun Jia

Chemical Research in Chinese Universities ›› : 1 -11.

PDF
Chemical Research in Chinese Universities ›› :1 -11. DOI: 10.1007/s40242-025-5135-4
Article
research-article

Construction of WO3/CN Z-Type Heterojunction Containing Oxygen Vacancies to Enhance Formaldehyde Degradation Efficiency and Photocatalytic Performance

Author information +
History +
PDF

Abstract

In this study, WO3 nanorods were synthesized via acid-induced and hydrothermal methods, and WO3/CN composites were prepared through simple thermal copolymerization. This was achieved with the objective of enhancing the formaldehyde degradation efficiency and photocatalytic dye degradation capacity of graphite-enhanced carbon nitride (CN). The composite material degraded formaldehyde 90.3% under 4 h of light irradiation, exhibiting a degradation rate that is 3.57 times that of pure CN. At the same time, the degradation of RhB was basically completed after 40 min of illumination, and the degradation rate was 3.92 times that of pure CN. The augmented photodegradation activity is ascribed to the synergistic effect of Z-type heterojunction formation and oxygen vacancy existence. This enhancement in light absorption capacity is achieved by means of an effective separation of photogenerated carrier under visible light irradiation. Moreover, oxygen vacancies furnish an abundance of active sites, thereby reducing carrier migration distances and enhancing photocatalytic activity through the promotion of carrier separation. In addition, the catalyst demonstrates exceptional stability and reproducibility, maintaining its performance over a period of four cycles.

Keywords

Graphitic carbon nitride / WO3 / Z-Type heterojunction / Oxygen vacancy / Photocatalysis

Cite this article

Download citation ▾
Wei Shang, Jiahui Chen, Jianguo Qiao, Xiaohang Yang, Pengpeng Wang, Dumin Li, Tianxiang Li, Shiyu Zhou, Ruokun Jia. Construction of WO3/CN Z-Type Heterojunction Containing Oxygen Vacancies to Enhance Formaldehyde Degradation Efficiency and Photocatalytic Performance. Chemical Research in Chinese Universities 1-11 DOI:10.1007/s40242-025-5135-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ShenH, LiuY, ZhaoM, LiJ, ZhangY, YangJ, JiangY, ChenT, ChenM, HuangX, LiC, GuoD, SunX, XueL, WangWSci. Total Environ., 2021, 764144031.

[2]

ZhangM, GaoH, ChenJ, ElimianE A, JiaHAppl. Catal. B: Environ., 2022, 307121208.

[3]

YuM, WangJ, TangL, FengC, LiuH, ZhangH, PengB, ChenZ, XieQWater Res., 2020, 175115673.

[4]

HuangO, PengM, SongK, WangS, GaoH, TanBChem. Synth., 2024, 51

[5]

WangZ, YuH, XiaoY, ZhangL, GuoL, ZhangL, DongXChem. Eng. J., 2020, 394125014.

[6]

WangY, ZhangN, ZhangY, CuiS, LuP, ZhangYCem. Concr. Compos., 2024, 154105742.

[7]

GongX, LiuJ, ZhangC, CaoM, MinY, YuanC, HuX, XuJ, LiuHInt. J. Biol. Macromol., 2024, 274133377.

[8]

GallegoE, RocaF J, PeralesJ F, GuardinoXBuild. Environ., 2013, 6714.

[9]

AhmadI, AftabM A, FatimaA, MekkeyS D, MelhiS, IkramSCoord. Chem. Rev., 2024, 514215904.

[10]

BaishnishaA, DivakaranK, BalakumarV, PerumalK N, MeenakshiC, KannanR SJ. Alloys Compd., 2021, 886161167.

[11]

FujishimaA, HondaKNature, 1972, 23837.

[12]

GuS, LiuX, WangH, LiuZ, XingH, YuLCeram. Int., 2023, 495180.

[13]

YuanS, DaiL, XieM, LiuJ, PengHChem. Eng. Sci., 2024, 296120245.

[14]

TongY, XiaJ, HuY, HeY, HeG, ChenHChem. Commun., 2024, 611509.

[15]

ChanD K L, YuJ CCatal. Today, 2018, 31026.

[16]

SinghP P, SrivastavaVRSC Adv., 2022, 1218245.

[17]

RenX, ZhangY, YangL, ChenZInorg. Chem. Commun., 2021, 133108863.

[18]

YangX, GuoZ, XuY, LiZ, ZhouY, YangZ, ZhouZ, GaoY, ZhangJChem. Res. Chinese Universities, 2024, 40536.

[19]

Al MamariS, SulimanF E, KimY, SelvarajRAdv. Powder Technol., 2023, 34104026.

[20]

Othman AlqahtaniFJ. Saudi, Chem. Soc., 2024, 28101918.

[21]

HuX, WangL, ZhangW, WangY, LiuZ, WangX, YaoXDiamond Relat. Mater., 2023, 140110533.

[22]

LiY, ZhouM, ChengB, ShaoYJournal of Materials Science & Technology, 2020, 561.

[23]

ChenS, PengY, LiC, HouZInt. J. Hydrogen Energy, 2021, 4632055.

[24]

PeiZ, GuoHJ. Phys. Chem. Solids, 2023, 176111236.

[25]

ZhangL, ZhangH, WangB, HuangX, YeY, LeiR, FengW, LiuPAppl. Catal. B: Environ., 2019, 244529.

[26]

HuangX, ZhangX, ZhangK, XueX, XiongJ, HuangY, ZhangD, ZhangJ, ZhangZ, YanFJ. Alloys Compd., 2021, 877160321.

[27]

SunY-W, LongW-Y, GuoY-X, WeiR-J, WangY-J, ZhangJ, HuS-ZDiamond Relat. Mater., 2022, 130109555.

[28]

KolaeiM, LeeB-K, MasoumiZJ. Alloys Compd., 2023, 968172133.

[29]

ChoA Y, KimJ H, ChoiS R, ParkJ-Y, HeoY-U, ChoiJ S, ChoiTJ. Power Sources, 2024, 608234650.

[30]

LiB, HeY, XiaoM, ZhangY, WangZ, QinZ, ChaiB, YanJ, LiJ, LiJ, CaoZColloids Surf. A, 2022, 642128205.

[31]

XiaoT, TangZ, YangY, TangL, ZhouY, ZouZAppl. Catal. B: Environ, 2018, 220417.

[32]

TahirB, TahirM, NawawiM G MJ. CO2 Util., 2020, 41101270.

[33]

ZuoC, TaiX, SuQ, JiangZ, GuoQOpt. Mater., 2023, 137113560.

[34]

XuN, LiC, LinX, LinX, ZhaoX, NanJ, XiaoXApplied Catalysis A: General, 2024, 680119776.

[35]

YangJ, ChenL, XuJ, XuY, WangW, HanB, WangY, ZhangJJ. Alloys Compd., 2023, 957170277.

[36]

LiuY, YuC, LuH, LiuL, TangJEnviron. Res., 2024, 262119972.

[37]

KeJ, ZhouH, LiuJ, DuanX, ZhangH, LiuS, WangSJ. Colloid Interface Sci., 2018, 514576.

[38]

NasirM S, YangG, AyubI, WangX, WangS, YanWInt. J. Hydrogen Energy, 2020, 4513994.

[39]

Arce-SarriaA, Caicedo-RoseroC L, Lara-RamosJ A, Diaz-AnguloJ, Machuca-MartínezFData in Brief, 2019, 25104151.

[40]

HuS, LiangY, ChenF, HeG, WangY, LiW, HeQFlatChem, 2022, 35100419.

[41]

ZhangY, LiS, HuX, FangY, DuanR, ChenQJ. Colloid Interface Sci., 2024, 65994.

[42]

LiuN, ZhangH, ZhuJ, LiuQ, YuJ, ChenR, LiY, LiR, WangJJ. Environ. Chem. Eng., 2024, 12112185.

[43]

JiaR, WangP, YangX, LiD, QiaoJ, LiT, ChenJJ. Mol. Struct., 2025, 1337142156.

[44]

DongY, DuW, GaoX, GuoMJ. Clean Prod., 2022, 365132827.

[45]

ZhangG, LiuY, ZhengS, SunZAdv. Powder Technol., 2021, 324364.

[46]

LiuS-H, LinW-XJ. Hazard. Mater., 2019, 368468.

[47]

LiJ, RenD, WuZ, XuJ, BaoY, HeS, ChenYJ. Colloid Interface Sci., 2018, 53078.

[48]

DuanJ, HeX, FangX, YueJ, ChenG, WangWDiamond Relat. Mater., 2022, 129109365.

[49]

ZhangX, LiuB, YangY, LiuW, HouZ, ShangJ, ChengXJ. Environ. Chem. Eng., 2022, 10107171.

[50]

ZhouS, LiP, ZhangC, WangY, DongG, JiaRChem. Res. Chinese Universities, 2025, 41583.

[51]

AcarE G, KoçB K, IsrarM, AslanE, AltanO, Patırİ H H, MetinÖJ. Environ. Chem. Eng., 2025, 13115343.

[52]

ZhangH, WangY, ZhuJ, LuX, BaiY, LiW, MuLChem. Synth., 2024, 514

[53]

LuoW, WeiX, WangJ, ZhangY, YangY, LiuJ, TianY, DuanLSurf. Interf., 2024, 55105306.

[54]

ZhenL, XuY, LiuJ, WuZ, ShiJ, DengHJ. Water Process Eng., 2024, 68106518.

[55]

ZhengM-W, Hoang YenL T, Thuy TranN T, Duyen HuynhT M, TsaiK-A, PuY-C, LiuS-HInorg. Chem. Commun., 2025, 179114767.

[56]

ZhengZ, ZhangC, LiJ, FangD, TanP, FangQ, ChenGJ. Hazard. Mater., 2024, 474134710.

[57]

DongN, YeQ, ChenM, ChengS, KangT, DaiHChin. J. Catal., 2020, 411734.

[58]

LiD, LiuP, ZhengY, WuY, LingL, ChenL, HaoF, LvY, XiongW, LuoH AJ. Environ. Chem. Eng., 2022, 10108510.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

/