Theoretical Investigation on the Catalytic Activity of Bis-boron Phosphonium Salt for the Copolymerization of Propylene Oxide and Carbon Dioxide

Xinyuan Song , Haiping Zhou , Xiaoxia You , Xiaowu Wang , Ronglin Zhong , Zhongmin Su

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1193 -1200.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1193 -1200. DOI: 10.1007/s40242-025-5134-5
Article
research-article

Theoretical Investigation on the Catalytic Activity of Bis-boron Phosphonium Salt for the Copolymerization of Propylene Oxide and Carbon Dioxide

Author information +
History +
PDF

Abstract

This study theoretically investigated the regulation mechanism of catalytic activity in the copolymerization of propylene oxide (PO) and carbon dioxide (CO2) catalyzed by a well-designed bis-boron phosphonium salt (PBB) catalyst through density functional theory (DFT) calculations. Mechanistic analysis suggests that the alternating copolymerization of PO and CO2 is thermodynamically and kinetically favorable. The results revealed that initiation efficiency is dependent on the counter anions of phosphonium salt, where Br. exhibited a higher ring-opening reactivity of PO than Cl.. The electronic effect of the catalyst for the initiation step is investigated by altering substituent groups in PBB catalysts and results suggest that the catalytic activity is improved by the substitution of electron-donating groups. On the other hand, the catalytic activity of such PBB catalysts is also significantly dependent on the number of methylene groups (chain length) between the phosphorus center and boron atom, suggesting a synergism and confinement characteristic of PBB catalysts. Interestingly, computational results clearly show that secondary (electrostatic) interaction induced by the tetra-coordinated boronate complex stabilizes the transition states of ring-opening of PO and accelerates the polymerization. This work provides theoretical insights for designing efficient supramolecular catalysts and optimizing CO2 utilization strategies.

Keywords

Bis-boron catalyst / Ring-opening reaction / Catalytic activity / Copolymerization / Density functional theory

Cite this article

Download citation ▾
Xinyuan Song, Haiping Zhou, Xiaoxia You, Xiaowu Wang, Ronglin Zhong, Zhongmin Su. Theoretical Investigation on the Catalytic Activity of Bis-boron Phosphonium Salt for the Copolymerization of Propylene Oxide and Carbon Dioxide. Chemical Research in Chinese Universities, 2025, 41(5): 1193-1200 DOI:10.1007/s40242-025-5134-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ArestaM, DibenedettoA, AngeliniAChem. Rev., 2014, 1141709.

[2]

AppelA M, BercawJ E, BocarslyA B, DobbekH, DuBoisD L, DupuisM, FerryJ G, FujitaE, HilleR, KenisP J A, KerfeldC A, MorrisR H, PedenC H F, PortisA R, RagsdaleS W, RauchfussT B, ReekJ N H, SeefeldtL C, ThauerR K, WaldropG LChem. Rev., 2013, 1136621.

[3]

ZhangX, FevreM, JonesG O, WaymouthR MChem. Rev., 2018, 118839.

[4]

HuS, ZhaoJ, ZhangG, SchlaadHProg. Polym. Sci., 2017, 7434.

[5]

ArtzJ, MüllerT E, ThenertK, KleinekorteJ, MeysR, SternbergA, BardowA, LeitnerWChem. Rev., 2018, 118434.

[6]

LiuQ, WuL, JackstellR, BellerMNat. Commun., 2015, 65933.

[7]

GrignardB, GennenS, JérômeC, KleijA W, DetrembleurCChem. Soc. Rev., 2019, 484466.

[8]

HuangJ, WorchJ C, DoveA P, CoulembierOChemSusChem, 2020, 13469.

[9]

KemberM R, BuchardA, WilliamsC KChem. Commun., 2011, 47141.

[10]

KlausS, LehenmeierM W, AndersonC E, RiegerBCoord. Chem. Rev., 2011, 2551460.

[11]

CokojaM, BruckmeierC, RiegerB, HerrmannW A, KühnF EAngew. Chem. Int. Ed., 2011, 508510.

[12]

DarensbourgD JChem. Rev., 2007, 1072388.

[13]

CoatesG W, MooreD RAngew. Chem. Int. Ed., 2004, 436618.

[14]

QinZ, ThomasC M, LeeS, CoatesG WAngew. Chem. Int. Ed., 2003, 425484.

[15]

RenW-M, LiuZ-W, WenY-Q, ZhangR, LuX-BJ. Am. Chem. Soc., 2009, 13111509.

[16]

WuG-P, WeiS-H, RenW-M, LuX-B, XuT-Q, DarensbourgD JJ. Am. Chem. Soc., 2011, 13315191.

[17]

LuX-B, DarensbourgD JChem. Soc. Rev., 2012, 411462.

[18]

DarensbourgD J, MackiewiczR M, PhelpsA L, BillodeauxD RAcc. Chem. Res., 2004, 37836.

[19]

KemberM R, WilliamsC KJ. Am. Chem. Soc., 2012, 13415676.

[20]

ChengM, LobkovskyE B, CoatesG WJ. Am. Chem. Soc., 1998, 12011018.

[21]

JutzF, BuchardA, KemberM R, FredriksenS B, WilliamsC KJ. Am. Chem. Soc., 2011, 13317395.

[22]

ShengX, WangY, QinY, WangX, WangFRSC Adv., 2014, 454043.

[23]

TakedaN, InoueSMakromol. Chem., 1978, 1791377.

[24]

NakanoK, KobayashiK, NozakiKJ. Am. Chem. Soc., 2011, 13310720.

[25]

LuX-B, ShiL, WangY-M, ZhangR, ZhangY-J, PengX-J, ZhangZ-C, LiBJ. Am. Chem. Soc., 2006, 1281664.

[26]

LiJ, WangW, GuY, SongX, ZhouZ, WangX, ZhongR, LiZCCS Chem., 2025

[27]

WuC, SongX, HanQ, ZhongR, WangX, LiZ, LiuYCCS Chem., 2025

[28]

ZhouZ, WangX, SongX, ZhongR, LiZMacromolecules, 2025, 585049.

[29]

YangG-W, ZhangY-Y, XieR, WuG-PAngew. Chem. Int. Ed., 2020, 5916910.

[30]

YangG-W, XuC-K, XieR, ZhangY-Y, LuC, QiH, YangL, WangY, WuG-PNat. Synth., 2022, 1892.

[31]

WangX, HuiJ, ShiM, KouX, LiX, ZhongR, LiZACS Catal., 2022, 128434.

[32]

WangX, ShiM, HuiJ, KouX, WangJ, ZhongR, LiZMacromolecules, 2023, 564030.

[33]

FrischM J, TrucksG W, SchlegelH B, ScuseriaG E, RobbM A, CheesemanJ R, ScalmaniG, BaroneV, PeterssonG A, NakatsujiH, LiX, CaricatoM, MarenichA V, BloinoJ, JaneskoB G, GompertsR, MennucciB, HratchianH P, OrtizJ V, IzmaylovA F, SonnenbergJ L, WilliamsD F, LippariniF, EgidiF, GoingsJ, PengB, PetroneA, HendersonT, RanasingheD, ZakrzewskiV G, GaoJ, RegaN, ZhengG, LiangW, HadaM, EharaM, ToyotaK, FukudaR, HasegawaJ, IshidaM, NakajimaT, HondaY, KitaoO, NakaiH, VrevenT, ThrossellK, MontgomeryJ AJr., PeraltaJ E, OgliaroF, BearparkM J, HeydJ J, BrothersE N, KudinK N, StaroverovV N, KeithT A, KobayashiR, NormandJ, RaghavachariK, RendellA P, BurantJ C, IyengarS S, TomasiJ, CossiM, MillamJ M, KleneM, AdamoC, CammiR, OchterskiJ W, MartinR L, MorokumaK, FarkasO, ForesmanJ B, FoxD JGaussian 16 Rev. C. 01, 2019

[34]

ValeroR, CostaR, de P. RM I, TruhlarD G, IllasFJ. Chem. Phys., 2008, 128114103.

[35]

ZhaoY, TruhlarD GAcc. Chem. Res., 2008, 41157.

[36]

LayM D SKinetics of the Liquid-phase Addition Reactions Initiated by Propylene Oxide and Methanol and Catalyzed by Sodium Hydroxide., 1959, Detroit. University of Michigan.

[37]

MennucciB, TomasiJJ. Chem. Phys., 1997, 1065151.

[38]

CancèsE, MennucciB, TomasiJJ. Chem. Phys., 1997, 1073032.

[39]

CossiM, BaroneV, MennucciB, TomasiJChem. Phys. Lett., 1998, 286253.

[40]

MammenM, ShakhnovichE I, DeutchJ M, WhitesidesG MJ. Org. Chem., 1998, 633821.

[41]

LegaultCCYLview20, 2020

[42]

LuT, ChenFJ. Comput. Chem., 2012, 33580.

[43]

HumphreyW, DalkeA, SchultenKJ. Mol. Graph., 1996, 1433.

[44]

LuT, ChenQJ. Comput. Chem., 2022, 43539.

[45]

LiY, KouX, WangX, XiaL, LiZPolym. Chem., 2024, 152476.

[46]

HirahataW, ThomasR M, LobkovskyE B, CoatesG WJ. Am. Chem. Soc., 2008, 13017658.

[47]

WidgerP C B, AhmedS M, CoatesG WMacromolecules, 2011, 445666.

[48]

LuT, ChenQJ. Phys. Chem. A, 2023, 1277023.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/