Theoretical Studies on the Deacylation Stage of the Hydrolysis of PET Heptamer by PETase

Xuehui Guo , Yanzi Zhou , Daiqian Xie

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1076 -1083.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (5) : 1076 -1083. DOI: 10.1007/s40242-025-5133-6
Article
research-article

Theoretical Studies on the Deacylation Stage of the Hydrolysis of PET Heptamer by PETase

Author information +
History +
PDF

Abstract

The extensive use and excellent durability of polyethylene terephthalate (PET) have caused a surge in plastic waste. The discovery of the Ideonella sakaiensis PETase (IsPETase) has opened up a promising avenue for PET bio-recycling, as it can effectively depolymerize PET into valuable monomers. In this work, we employed the M06-2X/MM-MD method (MM-MD: molecular mechanics-molecular dynamics) to study the deacylation reaction of a PET heptamer and reveal the structural features that influence the free energy barrier. This reaction proceeds in a stepwise manner, and the first step is rate-limiting. The energy barrier is 20.4 kcal/mol (1 kcal=4.18 kJ), higher than those for other PET substrates with shorter chains, which supports our previous finding that the deacylation becomes difficult with increasing PET chain length. The hydrogen bonds in the oxyanion hole and between His208 and Asp177 play an important role in the reaction mechanism. In addition, PET self-interaction increases the free energy barrier compared with the short oligomers. This work reveals the catalytic mechanism of PETase in degrading long-chain PET, aiming to promote the engineering of a critical class of enzymes in plastic recycling.

Keywords

PETase / Biodegradation / Polyethylene terephthalate / Quantum mechanics/molecular mechanics-molecular dynamics (QM/MM-MD)

Cite this article

Download citation ▾
Xuehui Guo, Yanzi Zhou, Daiqian Xie. Theoretical Studies on the Deacylation Stage of the Hydrolysis of PET Heptamer by PETase. Chemical Research in Chinese Universities, 2025, 41(5): 1076-1083 DOI:10.1007/s40242-025-5133-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BrunnerI, FischerM, RüthiJ, StierliB, FreyBPlos One, 2018, 13e0202047.

[2]

PicóY, BarcelóDACS Omega, 2019, 46709.

[3]

AlmeidaE L, Carrillo RincónA F, JacksonS A, DobsonA D WFront. Microbiol., 2019, 102187.

[4]

CarrC M, ClarkeD J, DobsonA D WFront. Microbiol., 2020, 11571265.

[5]

WeiR, ZimmermannWMicrob. Biotechnol., 2017, 101302.

[6]

YoshidaS, HiragaK, TakehanaT, TaniguchiI, YamajiH, MaedaY, ToyoharaK, MiyamotoK, KimuraYScience, 2016, 3511196.

[7]

AustinH P, AllenM D, DonohoeB S, RorrerN A, KearnsF L, SilveiraR L, PollardB C, DominickG, DumanR, El OmariK, MykhaylykV, WagnerA, MichenerW E, AmoreA, SkafM S, CrowleyM F, ThorneA W, JohnsonC W, WoodcockH L, McGeehanJ E, BeckhamG TProc. Natl. Acad. Sci. USA, 2018, 115E4350.

[8]

JooS, ChoI J, SeoH, SonH F, SagongH-Y, ShinT J, ChoiS Y, LeeS Y, KimK-JNat. Commun., 2018, 9382.

[9]

LiuB, HeL, WangL, LiT, LiC, LiuH, LuoY, BaoRChemBioChem, 2018, 191471.

[10]

HanX, LiuW, HuangJ-W, MaJ, ZhengY, KoT-P, XuL, ChengY-S, ChenC-C, GuoR-TNat. Commun., 2017, 82106.

[11]

CostaC H, SantosA D, AlvesC N, MartíS, SilvaJ LProteins Struct. Funct. Bioinf., 2021, 891340.

[12]

FeckerT, Galaz-DavisonP, EngelbergerF, NaruiY, SotomayorM, ParraL P, Ramírez-SarmientoC ABiophys. J., 2018, 1141302.

[13]

JervesC, NevesR P P, RamosM J, da SilvaS, FernandesP AACS Catal., 2021, 1111626.

[14]

GuoX, JiangY, XieD, ZhouYJ. Biomol. Struct. Dyn., 2024, 426842.

[15]

BonetaS, ArafetK, MolinerVJ. Chem. Inf. Model., 2021, 613041.

[16]

dos SantosA M, da CostaC H S, SilvaP H A, SkafM S, LameiraJJ. Phys. Chem. B, 2024, 1287486.

[17]

García-MeseguerR, OrtíE, TuñónI, Ruiz-PerníaJ J, AragóJJ. Am. Chem. Soc, 2023, 14519243.

[18]

JervesC, NevesR P P, da SilvaS L, RamosM J, FernandesP ANew J. Chem., 2024, 4845.

[19]

BurginT, PollardB C, KnottB C, MayesH B, CrowleyM F, McGeehanJ E, BeckhamG T, WoodcockH LCommun. Chem., 2024, 765.

[20]

FengS, YueY, ZhengM, LiY, ZhangQ, WangWACS Sustain. Chem. Eng., 2021, 99823.

[21]

MagalhãesR P, FernandesH S, SousaS FCatal. Sci. Technol., 2022, 123474.

[22]

ZhengM, LiY, DongW, ZhangW, FengS, ZhangQ, WangWACS Sustain. Chem. Eng., 2022, 107341.

[23]

ZhengM, LiY, XueR, DongW, ZhangQ, WangWJ. Cleaner Prod., 2022, 377134429.

[24]

GuoX, XieD, ZhouYJ. Phys. Chem. B, 2025, 1295400.

[25]

JäckeringA, GöttschF, SchäfflerM, DoerrM, BornscheuerU T, WeiR, StrodelBJACS AU, 2024, 44000.

[26]

WangJ, WolfR M, CaldwellJ W, KollmanP A, CaseD AJ. Comput. Chem., 2004, 251157.

[27]

MaierJ A, MartinezC, KasavajhalaK, WickstromL, HauserK E, SimmerlingCJ. Chem. Theory Comput., 2015, 113696.

[28]

CaseD A, DardenT A, CheathamT E, SimmerlingC L, WangJ, DukeR E, LuoR, CrowleyM, WalkerR C, ZhangW, MerzK M, WangB, HayikS, RoitbergA, SeabraG, KolossváryI, WongK F, PaesaniF, VanicekJ, WuX, BrozellS R, SteinbrecherT, GohlkeH, YangL, TanC, MonganJ, HornakV, CuiG, MathewsD H, SeetinM G, SaguiC, BabinV, KollmanP AAmber 16, 2016, San Francisco. University of California.

[29]

RoeD R, CheathamT EJ. Chem. Theory Comput., 2013, 93084.

[30]

ShaoY, MolnarL F, JungY, KussmannJ, OchsenfeldC, BrownS T, GilbertA T B, SlipchenkoL V, LevchenkoS V, O’NeillD P, DiStasioR AJr., LochanR C, WangT, BeranG J O, BesleyN A, HerbertJ M, LinC Y, VoorhisT V, ChienS H, SodtA, SteeleR P, RassolovV A, MaslenP E, KorambathP P, AdamsonR D, AustinB, BakerJ, ByrdE F C, DachselH, DoerksenR J, DreuwA, DunietzB D, DutoiA D, FurlaniT R, GwaltneyS R, HeydenA, HirataS, HsuC-P, KedzioraG, KhalliulinR Z, KlunzingerP, LeeA M, LeeM S, LiangW, LotanI, NairN, PetersB, ProynovE I, PieniazekP A, Min RheeY, RitchieJ, RostaE, David SherrillC, SimmonettA C, SubotnikJ E, Lee WoodcockHIII, ZhangW, BellA T, ChakrabortyA K, ChipmanD M, KeilF J, WarshelA, HehreW J, SchaeferH FIII, KongJ, KrylovA I, GillP M W, Head-GordonMPhys. Chem. Chem. Phys., 2006, 83172.

[31]

CaseD A, DardenT A, CheathamT E, SimmerlingC L, WangJ, DukeR E, LuoR, CrowleyM, WalkerR C, ZhangW, MerzK M, WangB, HayikS, RoitbergA, SeabraG, KolossváryI, WongK F, PaesaniF, VanicekJ, WuX, BrozellS R, SteinbrecherT, GohlkeH, YangL, TanC, MonganJ, HornakV, CuiG, MathewsD H, SeetinM G, SaguiC, BabinV, KollmanP AAmber 12, 2012, San Francisco. University of California.

[32]

KongA, McCullaghP, MengX-L, NicolaeD, TanZJ. R. Stat. Soc. B, 2003, 65585.

[33]

ShirtsM R, ChoderaJ DJ. Chem. Phys., 2008, 129124105.

[34]

TanZ, GallicchioE, LapelosaM, LevyR MJ. Chem. Phys., 2012, 136144102.

[35]

FalkensteinP, ZhaoZ, Di Pede-MattatelliA, KünzeG, SommerM, SonnendeckerC, ZimmermannW, ColizziF, MatysikJ, SongCACS Catal., 2023, 136919.

[36]

ChenZ, WangY, ChengY, WangX, TongS, YangH, WangZSci. Total Environ., 2020, 709136138.

[37]

SherrillC DAcc. Chem. Res., 2013, 461020.

[38]

TsuzukiS, HondaK, UchimaruT, MikamiM, TanabeKJ. Am. Chem. Soc, 2002, 124104.

[39]

WheelerS E, HoukK NJ. Am. Chem. Soc., 2009, 1313126.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/