Organophosphate Esters in Urban Surface Soils: Source Tracking and Main Drivers for the Spatial Variation

Wei Wang , Zhuoni Sun , Lu Jiang , Yihan Yu , Zhigang Li , Yawei Wang

Chemical Research in Chinese Universities ›› : 1 -8.

PDF
Chemical Research in Chinese Universities ›› :1 -8. DOI: 10.1007/s40242-025-5132-7
Article
research-article

Organophosphate Esters in Urban Surface Soils: Source Tracking and Main Drivers for the Spatial Variation

Author information +
History +
PDF

Abstract

Organophosphate esters (OPEs) contamination in urban soils has become a critical environmental concern, particularly in industrialized regions. In this work, 17 OPEs were simultaneously analyzed in 160 soil samples collected from Tianjin, China. All OPEs were detected in Tianjin soil OPEs, with total concentrations ranging from 0.08 ng/g to 144.78 ng/g (mean: 12.88 ng/g). Among these, tris(2-chloroisopropyl) phosphate (TCIPP) was the predominant compound observed. The contamination levels in residential areas and industrial parks were significantly higher than those in other types, indicating that human activities and industrial production are major contributors to these elevated concentrations. Spearman correlation analysis of the nine commonly detected OPEs monomers suggested shared emission sources and environmental behaviors. Furthermore, positive matrix factorization (PMF) analyses identified automobile emissions, production of polyvinyl chloride (PVC), and production of polyurethane foams as major contributors to OPEs emissions. Structural equation model (SEM) quantifies the direct and indirect impacts of socioeconomic factors on OPEs. Assessment of human exposure risk and ecological risk at ambient OPEs levels in Tianjin soils revealed negligible risks via soil ingestion. Overall, this study elucidates the distribution pattern of OPEs in Tianjin, offering a valuable reference point for evaluating environmental safety and implementing effective pollution control strategies in urbanized areas.

Keywords

Organophosphate ester / Environmental distribution / Source appointment / Risk assessment

Cite this article

Download citation ▾
Wei Wang, Zhuoni Sun, Lu Jiang, Yihan Yu, Zhigang Li, Yawei Wang. Organophosphate Esters in Urban Surface Soils: Source Tracking and Main Drivers for the Spatial Variation. Chemical Research in Chinese Universities 1-8 DOI:10.1007/s40242-025-5132-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhao A, Wei C, Xin Y, Wang X, Zhu Q, Xie J, Ma H, Xu J, Wang MJ. Hazard. Mater., 2023, 444: 130373.

[2]

Lao J -Y, Lin H, Qin X, Ruan Y, Leung K M Y, Zeng E Y, Lam P K SEnviron. Sci. Technol., 2022, 56: 12003.

[3]

Huang M, Zeng L, Wang C, Zhou X, Peng Y, Shi C, Wang S, Li Y, Barcelo D, Li HCritical Reviews in Environmental Science and Technology, 2025, 55: 310.

[4]

Liu R, Mabury S AEnviron. Sci. Technol., 2018, 52: 9677.

[5]

Ji X, Liang J, Wang Y, Liu X, Li Y, Liu Q, Liu REnviron. Sci. Technol., 2023, 57: 21550.

[6]

Liu Q, Liu R, Zhang X, Li W, Harner T, Saini A, Liu H, Yue F, Zeng L, Zhu Y, Xing C, Li L, Lee P, Tong S, Wang W, Ge M, Wang J, Wu X, Johannessen C, Liggio J, Li S -M, Hung H, Xie Z, Mabury S A, Abbatt J P DOne Earth, 2023, 6: 1202.

[7]

Liu R, Mabury S AEnviron. Sci. Technol., 2019, 53: 1805.

[8]

Liu R, Mabury S AEnviron. Sci. Technol. Lett., 2021, 8: 651.

[9]

Estill C F, Mayer A C, Chen I C, Slone J, Laguardia M J, Jayatilaka N, Ospina M, Sjodin A, Calafat A MEnviron. Sci. Technol., 2024, 58: 8417.

[10]

Li J, Cao H, Mu Y, Qu G, Zhang A, Fu J, Jiang GEnviron. Sci. Technol., 2020, 54: 14525.

[11]

Gao K, Hua K, Wang S, Chen X, Zhu TJ. Hazard. Mater., 2025, 488: 137395.

[12]

Zhao Y, Deng Y, Shen F, Huang J, Yang J, Lu H, Wang J, Liang X, Su GJ. Hazard. Mater., 2024, 477: 135351.

[13]

Fan Q, Huang S, Guo J, Xie Y, Chen M, Chen Y, Qi W, Liu H, Jia Z, Hu H, Qu JJ. Hazard. Mater., 2024, 477: 135312.

[14]

Kurt-Karakus P, Alegria H, Birgul A, Gungormus E, Jantunen LSci. Total Environ., 2018, 625: 555.

[15]

Wu Y, Venier M, Salamova AEnviron. Sci. Technol., 2020, 54: 5400.

[16]

Castro-Jimenez J, Berrojalbiz N, Pizarro M, Dachs JEnviron. Sci. Technol., 2014, 48: 3203.

[17]

Xie Z, Zhang X, Xie Y, Liu F, Sun B, Liu W, Wu J, Wu YEnviron. Sci. Technol., 2024, 58: 4368

[18]

Lian M, Wang J, Wang Z, Lin C, Gu X, He M, Liu X, Ouyang WJ. Hazard. Mater., 2024, 469: 134035.

[19]

Cui J, Ge Y, Guo M, Zhang L, Zhang S, Zhao L, Shi Y, Baqar M, Yao Y, Zhu H, Wang L, Cheng Z, Sun HEnviron. Int., 2024, 194: 109165.

[20]

Ye L, Su GWater Res., 2022, 217: 118362.

[21]

Liao C, Kim U -J, Kannan KSci. Total Environ., 2020, 704: 135328.

[22]

Chen M Q, Gan Z W, Qu B, Chen S B, Dai Y Y, Bao X MMar. Pollut. Bull., 2019, 146: 874.

[23]

He J, Li J, Ma L, Wu N, Zhang Y, Niu ZSci. Total Environ., 2019, 697: 133997.

[24]

Han B, Chen L, Li Y, Yu L, Zhang J, Tao S, Liu WSci. Total Environ., 2022, 842: 156806.

[25]

Gao M, Zhang Q, Wu S, Wu L, Cao P, Zhang Y, Rong L, Fang B, Yuan C, Yao Y, Wang Y, Sun HEnviron. Sci. Technol., 2024, 58: 10740.

[26]

Li W, Wang Y, Kannan KEnviron. Int., 2019, 131: 105054.

[27]

Li W, Shi Y, Gao L, Wu C, Liu J, Cai YEnviron. Pollut., 2018, 241: 566.

[28]

Wan W, Zhang S, Huang H, Wu TEnviron. Pollut., 2016, 214: 349.

[29]

Li F, Shi R, Wang Y, He A, Han Z, Zheng X, Li C, Gao W, Wang Y, Jiang GEnviron. Pollut., 2021, 288: 117766.

[30]

Ma D H, Zhong H F, Lv J T, Wang Y W, Jiang G BJ. Environ. Sci., 2022, 112: 71.

[31]

Wei G -L, Li D -Q, Zhuo M -N, Liao Y -S, Xie Z -Y, Guo T -L, Li J -J, Zhang S -Y, Liang Z -QEnviron. Pollut., 2015, 196: 29.

[32]

Luo Q, Li Y, Wu Z, Wang X, Wang C, Shan Y, Sun LChemosphere, 2021, 277: 130347.

[33]

van der Veen I, de Boer JChemosphere, 2012, 88: 1119.

[34]

Wang J, Chen Y, Pan D, Zhang J, Zhang Y, Lu ZSci. Total Environ., 2023, 894: 165057.

[35]

Lao Z, Li H, Liao Z, Liu Y, Ying G, Song A, Liu M, Liu H, Hu LSci. Total Environ., 2023, 855: 158807.

[36]

Liu Y -S, Li H -R, Lao Z -L, Ma S -T, Liao Z -C, Song A -M, Liu M -Y, Liu Y -S, Ying G -GEnviron. Pollut., 2023, 336: 122492.

[37]

Wang Y, Yao Y, Li W, Zhu H, Wang L, Sun H, Kannan KSci. Total Environ., 2019, 671: 528.

[38]

Tian Y X, Wang Y, Chen H Y, Ma J, Liu Q Y, Qu Y J, Sun H W, Wu L N, Li X LSci. Total Environ., 2023, 879: 162855.

[39]

Qu Y, Gong Y, Ma J, Wei H, Liu Q, Liu L, Wu H, Yang S, Chen YEnviron. Pollut., 2020, 260: 114016.

[40]

Christia C, Poma G, Besis A, Samara C, Covaci AChemosphere, 2018, 196: 231.

[41]

Hao C, Helm P A, Morse D, Reiner E JChemosphere, 2018, 191: 288.

[42]

Brandsma S H, Brits M, de Boer J, Leonards P E GJ. Hazard. Mater., 2021, 416: 125758.

[43]

Zhang Q Y, Liu Y R, Li S Y, Li H, Gao M, Yao Y M, Wang L, Wang YEnviron. Sci. Technol., 2024, 58: 13929.

[44]

Ma Y L, Stubbings W A, Abdallah M A E, Cline-Cole R, Harrad SSci. Total Environ., 2022, 807: 150747.

[45]

Li W, Wang Y, Asimakopoulos A G, Covaci A, Gevao B, Johnson-Restrepo B, Kumosani T A, Malarvannan G, Moon H-B, Nakata H, Sinha R K, Tri Manh T, Kannan KEnviron. Int., 2019, 133: 105178.

[46]

Zhao L, Jian K, Su H, Zhang Y, Li J, Letcher R J, Su GEnviron. Int., 2019, 128: 343.

[47]

Ali N, Dirtu A C, Van d E N, Goosey E, Harrad S, Neels H, Mannetje A, Coakley J, Douwes J, Covaci AChemosphere, 2012, 88: 1276.

[48]

Stubbings W A, Harrad SChemosphere, 2018, 193: 720.

[49]

Li R, Wang H, Mi C, Feng C, Zhang L, Yang L, Zhou BChemosphere, 2019, 220: 811.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

/