Experimental Study and Mechanism Analysis on the Separation of 2-Methylfuran/Methanol from Biofuel Assisted by Ethylene Glycol

Yue Wang , Wenxiu Li , Pengfei Wang , Tao Zhang

Chemical Research in Chinese Universities ›› : 1 -7.

PDF
Chemical Research in Chinese Universities ›› :1 -7. DOI: 10.1007/s40242-025-5131-8
Article
research-article

Experimental Study and Mechanism Analysis on the Separation of 2-Methylfuran/Methanol from Biofuel Assisted by Ethylene Glycol

Author information +
History +
PDF

Abstract

The formation of azeotropic mixtures between 2-methylfuran (2-MF) and methanol (MeOH) during catalytic hydrogenation of furfural poses a significant challenge for their separation. To address this issue, ethylene glycol (EG) was systematically evaluated as a sustainable extractant for liquid-liquid extraction of the 2-MF-MeOH azeotrope. The σ-profiles of five candidate solvents, tetrahydrofuran (THF), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), dimethylacetamide (DMAC), and EG were analyzed. EG was identified as the optimal extractant due to its superior hydrogen-bonding capability. Key operational parameters including equilibrium temperature and azeotropic composition were experimentally optimized. Then, ternary liquidliquid phase equilibrium (LLE) data of 2-MF(1)+MeOH(2)+EG(3) were measured. The non-random two-liquid (NRTL) model demonstrated excellent correlation with LLE data (RMSD<2%), validating its reliability for process simulation. Multi-scale analysis methods for separation mechanism, such as electrostatic potential (ESP) mapping, independent gradient model based on Hirshfeld partition (IGMH), and molecular dynamics simulation were used to confirm the sites and types of interaction. This fundamental understanding of molecular interactions provides critical insights for designing sustainable separation processes in biomass-derived chemical production.

Keywords

Azeotropic separation / Liquid-liquid equilibrium / Molecular interaction

Cite this article

Download citation ▾
Yue Wang, Wenxiu Li, Pengfei Wang, Tao Zhang. Experimental Study and Mechanism Analysis on the Separation of 2-Methylfuran/Methanol from Biofuel Assisted by Ethylene Glycol. Chemical Research in Chinese Universities 1-7 DOI:10.1007/s40242-025-5131-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GandariasI, García-FernándezS, ObregónI, Agirrezabal-TelleriaI, AriasP LFuel Process. Technol., 2018, 178336.

[2]

KulkarniB B, MaradurS PBioresour. Technol., 2024, 402130805.

[3]

GiorgianniG, PerathonerS, CentiG, Soo-TangS H, de JongE, van der WaalJ C, AbateSChem. Eng. Res. Des., 2023, 197968.

[4]

LiB, LiL, SunH, ZhaoCACS Sustainable Chem. Eng., 2018, 612096.

[5]

GilkeyM J, PanagiotopoulouP, MironenkoA V, JennessG R, VlachosD G, XuBACS Catal., 2015, 53988.

[6]

WangC, WeiL, ChengZ, XuH, DanielR, ShuaiSCombust. Sci. Technol., 2015, 188329.

[7]

BanerjeeD, SahuA K, CleggJ K, UpadhyayulaSChem. Eng. J., 2024, 493152552.

[8]

YaoC, HouY, WuW, RenS, LiuHGreen Chemistry, 2018, 203101.

[9]

AghelB, MohadesiM, GouranASep. Sci. Technol., 2019, 553402.

[10]

WarragS E E, DarwishA S, AdeyemiI A, Hadj-KaliM K, KroonM C, AlNashefI MFluid Phase Equilib., 2020, 517112622.

[11]

YuY, ZhangL, ZhuC, HuangX, LiaoZ, LiQJ. Solution Chem., 2020, 491.

[12]

ZhuZ, XuY, FengT, WangN, LiuK, FanH, Reyes-LabartaJ A, WangY, GaoJ, WangLJ. Mol. Liq., 2020, 298111947.

[13]

CasásL M, OrgeB, FerreiraOJ. Chem. Eng. Data, 2008, 5389.

[14]

da SilvaJ L, AznarMFuel, 2014, 136316.

[15]

DaiF, HeG, XinK, ShiM, LiJ, LiQJ. Chem. Thermodyn., 2017, 11591.

[16]

LiC, WangX, LiH, DuanC, AnL, LiuQJ. Chem. Eng. Data., 2019, 641780.

[17]

YuY, ZhangX, YiL, LiM, ZhangF, WeiJJ. Chem. Eng. Data., 2022, 671195.

[18]

RenonH, PrausnitzJ MAlChE J., 1968, 14135.

[19]

ZhangY, LiH, LiH, ShanR, ZhuZ, WangY, GaoJJ. Chem. Thermodyn., 2022, 167106715.

[20]

DingY, GuoY, SunY, SunT, YeQ, LiJ, ParicaudP, PengCInd. Eng. Chem. Res., 2022, 6116193

[21]

BoysS F, BernardiFMol. Phys., 1970, 19553.

[22]

LuT, ChenFJ. Comput. Chem., 2011, 33580.

[23]

HumphreyW A D, SchultenKJ. Mol. Graph., 1996, 1433.

[24]

FuY, SongX, PangY, ZhengY, GaoLJ. Mol. Struct., 2023, 1290136000.

[25]

MartínezL, AndradeR, BirginE G, MartínezJ MJ. Comput. Chem., 2009, 302157.

[26]

BerendsenH J C, van der SpoelD, van DrunenRComput. Phys. Commun., 1995, 9143.

[27]

FanW, GeC, DingD, DengL, GaoJ, XuDJ. Chem. Thermodyn., 2023, 182107036.

[28]

ZhangA, YanH, NiuX, HanM, WangW, ZhangZ, LuW, LiT, LiQJ. Chem. Eng. Data., 2023, 682645.

[29]

Araya-LópezC, ContrerasJ, MerletG, CabezasR, OleaF, VillarroelE, SalazarR, RomeroJ, Quijada-MaldonadoEFluid Phase Equilib., 2022, 561113518.

[30]

ChenX, GaoX, ZhengH, ZhaoS, WangL EFluid Phase Equilib., 2012, 313102.

[31]

SunC, XingJ, QuY, ZhangY, CuiP, WangY, GaoJInd. Eng. Chem. Res., 2023, 629302.

[32]

WangW, WangY, LuW, ZhaoW, ZhuZ, CuiP, LiX, SongXSep. Purif. Technol., 2025, 359130587.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

PDF

240

Accesses

0

Citation

Detail

Sections
Recommended

/