Comparison of One-/Two-photon Absorption Properties of D-A-D Type Zinc Phthalocyanines Constructed with Different Rylene Diimides

Ding Zhang , Yaochuan Wang , Haoran Ni , Xue Sun , Yizhuo Wang , Dajun Liu , Xuesong Xu , Yu Chen

Chemical Research in Chinese Universities ›› : 1 -10.

PDF
Chemical Research in Chinese Universities ›› :1 -10. DOI: 10.1007/s40242-025-5130-9
Research Article
research-article

Comparison of One-/Two-photon Absorption Properties of D-A-D Type Zinc Phthalocyanines Constructed with Different Rylene Diimides

Author information +
History +
PDF

Abstract

As a bulky conjugated molecule, phthalocyanine is commonly combined with rylene diimides acceptors to form novel organic optical functional dyes with better planarity and conjugation, which has led to a wide range of applications in photovoltaic conversion, photodynamic therapy and photocatalysis. In this paper, we have compared the one-photon absorption (OPA) and two-photon absorption (TPA) properties of D-A-D structural zinc phthalocyanine donors constructed with different rylene diimides acceptors [naphthalene diimide (NDI), perylene diimide (PDI) and terrylene diimide (TDI)] based on time-dependent density functional theory (TD-DFT) and sum-over-states (SOS) method. With the addition of NDI, PDI and TDI groups as the acceptors, new absorption peaks can appear in the OPA spectra and the absorption spectral range can be expanded. Meanwhile, the increase of naphthalene ring contributes to the expansion of TPA cross-section and the appearance of stronger charge transfer characteristics in the TPA spectra, which will be confirmed in the transition density matrix (TDM) and charge density difference (CDD) diagrams.

Keywords

Zinc phthalocyanine / Rylene diimide / Two-photon absorption / Density functional theory

Cite this article

Download citation ▾
Ding Zhang, Yaochuan Wang, Haoran Ni, Xue Sun, Yizhuo Wang, Dajun Liu, Xuesong Xu, Yu Chen. Comparison of One-/Two-photon Absorption Properties of D-A-D Type Zinc Phthalocyanines Constructed with Different Rylene Diimides. Chemical Research in Chinese Universities 1-10 DOI:10.1007/s40242-025-5130-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bhattacharya S, Biswas C, Raavi S, Krishna J, S.Koteshwar D, Giribabu L, Rao S. RSC Adv., 2019, 9: 36726

[2]

Liao M, Scheiner S. J. Chem. Phys., 2001, 114: 9780

[3]

Zhou R, Josse F, Gopel W, Ozturk Z, Bekaroglu O. Appl. Organomet. Chem., 1996, 10: 557

[4]

Tang Z, Zhou P. J. Phys. Chem. B., 2020, 124: 3400

[5]

Sfyri G, Vamshikrishna N, Kumar C, Giribabu L, Lianos P. Sol. Energy, 2016, 140: 60

[6]

Abid S, Hassine S B, Sun Z, Richy N, Camerel F, Jamoussi B, Desce M B, Mongin O, Paul F, Roth C P. Macromolecules, 2021, 54: 6726

[7]

Sorokin B. Chem. Rev., 2013, 113: 8152

[8]

Sun Z, Jin L, He S, Zhao Y, Wei D, Evans G M, Duan X. Green Chem., 2012, 14: 1909

[9]

Mao J, Mei B, Li J, Yang S, Sun F, Lu S. Chin. J. Struct. Chem., 2022, 41: 2210082

[10]

Xu Z, Zhang Y, Su Y. Chem. Res. Chinese Universities, 2025, 41: 525

[11]

Sekita M, Jimenez A J, Marcos M L, Caballero E, Morgade M S R, Guldi DM, Torres T. Chem. Eur. J., 2015, 21: 19028

[12]

Lou Z, Zhou X, Tang Z, Zhou P. J. Phys. Chem. B, 2020, 124: 4564

[13]

Pan H, Ren Y, Wang Q, Hu J, Zhang Y, Wang K, Jiang J. Coord. Chem. Rev., 2025, 527: 216404

[14]

Li R, Yang T, Zhang J, Xu Z, Chao S. Int. J. Hydrogen Energy., 2025, 98: 648

[15]

Tang Z, Bai T, Zhou P. J. Phys. Chem. A, 2020, 124: 6920

[16]

Lu M, Fujitsuka M, Sugimoto A, Majima T. J. Phys. Chem. C, 2017, 121: 4558

[17]

Jimenez A J, Spaenig F, Morgade M S R, Ohkubo K, Fukuzumi S, Guldi DM, Torres T. Org. Lett., 2007, 9: 2481

[18]

Jimenez A J, Sekita M, Caballero E, Marcos M L, Morgade M S R, Guldi D M, Torres T. Chem. Eur. J., 2013, 19: 14506

[19]

Rodríguez D, Bottari G. J. Porphyrins Phthalocyanines, 2009, 13: 624

[20]

Fukuzumi S, Ohkubo K, Ortiz J, Gutierrez A M, Fernandez-Lazaro F, Sastre-Santos A. J. Phys. Chem. A, 2008, 112: 10744

[21]

Jin S, Supur M, Addicoat M, Furukawa K, Chen L, Nakamura T, Fukuzumi S, Irle S, Jiang D. J. Am. Chem. Soc., 2015, 137: 7817

[22]

Fernandez-Ariza J, Calderon R, Rodríguez-Morgade M, Guldi D, Torres T. J. Am. Chem. Soc., 2016, 138: 12963

[23]

Chen Y, Lin Y, El-Khouly M E, Zhuang X, Araki Y, Ito O, Zhang W. J. Phys. Chem. C, 2007, 111: 16096

[24]

Zhang D, Wang Y, Meng X, Ni H, Wang Y, Liu D, Wang G, Chen Y. J. Phys. Chem. A, 2024, 128: 6402

[25]

Ji W, Cheng W, Yuan Q, Mullen K, Yin M. Acc. Chem. Res., 2019, 52: 2266

[26]

Li L, Wang J, Chen M, Chen Y, Xiao W, Chen D, Lin M. Chin. Chem. Lett., 2019, 30: 2254

[27]

Bhardwaj K, Ahuja M, Sainib S, Kumar M, Kumar R. J. Mol. Struct., 2024, 1301: 137338

[28]

Stappert S, Li C, Mullen K. Chem. Mater., 2016, 28: 906

[29]

Wang W, Mao Y, Yang Z, Chen M. Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2024, 309: 123826

[30]

Sun M, Chen J, Xu H. J. Chem. Phys., 2008, 128: 064106

[31]

Mu X, Wang J, Sun M. J. Phys. Chem. C, 2019, 123: 14132

[32]

Goerigk L, Grimme S. Phys. Chem. Chem. Phys., 2011, 13: 6670

[33]

Schaefer H, Horn H, Ahlrichs R. J. Chem. Phys., 1992, 97: 2571

[34]

Schaefer H, Huber C, Ahlrichs R R. J. Chem. Phys., 1994, 100: 5829

[35]

Yanai T, Tew D P, Handy N C. Chem. Phys. Lett., 2004, 393: 51

[36]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J. Gaussian 16, Revision C.01, 2019, Wallingford CT, Gaussian, Inc.

[37]

Lu T, Chen F. J. Comput. Chem., 2012, 33: 580

[38]

Lu T. J. Chem. Phys., 2024, 161: 082503

[39]

Liu Z, Lu T, Chen Q. Carbon, 2020, 165: 461

[40]

Humphrey W, Dalke A, Schulten K. J. Mol. Graph. Model., 1996, 14: 33

[41]

Wang W, Xu X, Yang Z. Chem. Phys. Lett., 2021, 778: 138810

[42]

Wei J, Yang J, Li Y, Song Y. Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2022, 280: 121539

[43]

Cui L, Zhu S, Sun M. Physica E: Low Dimens. Syst. Nanostruct., 2021, 134: 114840

[44]

Mu X, Zong H, Zhu L, Sun M. J. Phys. Chem. C, 2020, 124: 2319

[45]

Chen Y, Sun L, Sun M, Zheng Y. Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2024, 304: 123286

[46]

Ke M R, Wang C, He Q, Que R, Wei Y, Zheng BY, Li X, Huang S, Huang J. Dyes Pigm., 2024, 227: 112169

[47]

Kılıçarslan F A. J. Fluoresc., 2023, 33: 2461

[48]

Ammasi A, Munusamy A P, Shkir M. J. Mol. Model., 2022, 28: 349

[49]

Chen L, Zhang K, Tang C, Zheng Q, Xiao Y. J. Org. Chem., 2015, 80: 1871

[50]

Riggs N E P, Schlesinger I, Wasielewski M R. J. Mater. Chem. C, 2020, 8: 15189

[51]

Zainalabdeen N, Fitzpatrick B, Kareem MM, Nandwana V, Cooke G, Rotello V M. Int. J. Mol. Sci., 2013, 14: 7468

[52]

Zhang Y, Zhou H, Wang X, Li X, Wei J, Qiao Y. Chem. Commun., 2021, 57: 651

[53]

Bai Q, Gao B, Ai Q, Wu Y, Ba X. Org. Lett., 2011, 13: 6484

[54]

Zhang D, Liu W, Yin S, Wang G, Liu D, Fang Q, Wang Y. J. Nonlinear Opt. Phys., 2023, 34: 2350079

[55]

Zhang D, Wang Y, Ni H, Wang W, Wang Y, Liu D, Xu X, Chen M. Chem. Phys. Lett., 2024, 856: 141662

[56]

Wójcik J, Peszke J, Ratuszna A, Kus P, Wrzalik R. Phys. Chem. Chem. Phys., 2013, 15: 19651

[57]

Rouxel R, Charlot M, Mir Y, Frochot C, Mongin O, Blanchard-Desce M. New J. Chem., 2011, 35: 1771

[58]

Telha S, Nouho A A, Ibrahim I A, Achaoui Y, Bouaaddi A, Jakjoud H, Baida F I. Optik, 2022, 268: 169735

[59]

Wang Y, Zhang F, Fan X, Lu Y, Wang C, Huang X, Zhang L. Photonics, 2023, 10: 1102

[60]

Fitri A, Benjelloun A, Benzakour M, McHarfi M, Hamidi M, Bouachrine M. Spectrochim. Acta A: Mol. Biomol. Spectrosc., 2014, 132: 232

[61]

Fadili D, Fahim Z, Alioui A, Bouzzine S, Hamidi M. Mater. Today Commun., 2024, 38: 108126

[62]

Pawlicki M, Collins H A, Denning R G, Anderson H L. Angew. Chem. Int. Ed., 2009, 48: 3244

[63]

Zhao X, Xiong Y, Ma J, Yuan Z. J. Phys. Chem. A, 2016, 120: 7554

[64]

Janjic J M, Shao P, Zhang S, Yang X, Patel S K. Biomaterials, 2014, 35: 4958

[65]

Chen M, Riggs N E P, Coleman A F, Young R M, Wasielewski M R. J. Phys. Chem. C, 2020, 124: 2791

[66]

Noskovicova N, Lorenc L, Magdolen P, Sigmundová I, Zahradník P, Velic D. Chem. Phys. Lett., 2018, 700: 22

[67]

Neduvhuledza Z, Nkaki T, Louzada M, Nyokong T, Khene S. Opt. Mater., 2020, 109: 110195

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

PDF

20

Accesses

0

Citation

Detail

Sections
Recommended

/