Ethylenediamine-assisted Co-assembly Strategy: Controllable Synthesis of Nitrogen-rich Doped Hollow Porous Carbon Spheres for Supercapacitors

Jiaxing Huang , Yumeng Liu , Liangliang Zhang , Li Li , Zhengwen Tan , Ling Zhang , Zhen-an Qiao

Chemical Research in Chinese Universities ›› : 1 -8.

PDF
Chemical Research in Chinese Universities ›› :1 -8. DOI: 10.1007/s40242-025-5128-3
Article
research-article

Ethylenediamine-assisted Co-assembly Strategy: Controllable Synthesis of Nitrogen-rich Doped Hollow Porous Carbon Spheres for Supercapacitors

Author information +
History +
PDF

Abstract

Owing to the unique structural characteristics and heteroatom doping as electrode materials for supercapacitor application, nitrogen-doped hollow porous carbon spheres (N-HPCS) have been extensively studied. However, the synthesis of N-HPCS with high nitrogen contents above 15% (mass fraction) is still a great challenge. Herein, an ethylenediamine-assisted co-assembly strategy is used to control the self-assembly between the 2,6-diaminopyridine-glyoxal Schiff base polymer precursor and the silica template, resulting in high N-content N-HPCS. The N-HPCS renders quantitatively controllable shell thickness (7–40 nm), controllable diameter of cavity (270–620 nm), high and adjustable N content (up to 15.1%, mass fraction), as well as a high ratio of beneficial N species (44.5% pyridine N and 36.7% pyridone/pyrrole N). N-HPCS exhibits excellent properties for supercapacitors with a ratio capacitance of 335 F/g at 0.2 A/g, and almost no attenuation of specific capacitance after 3000 cycles at a current density of 5 A/g, showing excellent cycle stability. The as-synthesized N-HPCS with high surface area, hollow structure and high nitrogen content exhibits broad application prospects as an advanced energy storage material.

Keywords

Co-assembly strategy / Nitrogen-rich doping / Hollow porous carbon sphere / Supercapacitor

Cite this article

Download citation ▾
Jiaxing Huang, Yumeng Liu, Liangliang Zhang, Li Li, Zhengwen Tan, Ling Zhang, Zhen-an Qiao. Ethylenediamine-assisted Co-assembly Strategy: Controllable Synthesis of Nitrogen-rich Doped Hollow Porous Carbon Spheres for Supercapacitors. Chemical Research in Chinese Universities 1-8 DOI:10.1007/s40242-025-5128-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiN, QinB, KangH, CaiN, HuangS, XiaoQNanoscale, 2021, 1313873.

[2]

AbbasS A, ForghaniM, AnhS, DonneS W, JungK-DEnergy Storage Materials, 2020, 24550.

[3]

LuA H, SunT, LiW C, SunQ, HanF, LiuD H, GuoYAngew. Chem. Int. Ed., 2011, 5011765.

[4]

WuY C, DuH, ZhuJ X, XuN, ZhouL, MaiLQChem. J. Chinese Universities, 2023, 4420220689

[5]

ShenX Y, ZhangS, WangS T, SongY YChem. J. Chinese Universities, 2023, 4420220627

[6]

LaiX, HalpertJ E, WangDEnergy Environ. Sci., 2012, 55604.

[7]

WangS J, HouL, LiC L, LiW C, LuA HChem. J. Chinese Universities, 2023, 4420220637

[8]

MutumaB K, RodriguesR, RanganathanK, MatsosoB, WamwangiD, HümmelgenI A, CovilleN JJ. Mater. Chem. A, 2017, 52539.

[9]

FuertesA B, Valle-VigónP, SevillaMChem. Commun., 2012, 486124.

[10]

LouX W, ArcherL A, YangZAdv. Mater., 2008, 203987.

[11]

FangX, ZangJ, WangX, ZhengMS, ZhengNJ. Mater. Chem. A, 2014, 26191.

[12]

LeeH J, ChoiS, OhMChem. Commun., 2014, 504492.

[13]

IkedaS, IshinoS, HaradaT, OkamotoN, SakataT, MoriH, KuwabataS, TorimotoT, MatsumuraMAngew. Chem. Int. Ed., 2006, 457063.

[14]

WangT, SunY, ZhangL, LiK, YiY, SongS, LiM, QiaoZ A, DaiSAdv Mater., 2019, 311807876.

[15]

HuoF, WangX, ZhangY, ZhangX, XuJ, ZhangWMacromol. Chem. Phys., 2013, 214902.

[16]

ErdmengerT, Guerrero-SanchezC, VitzJ, HoogenboomR, SchubertU SChem. Soc. Rev., 2010, 393317.

[17]

ZhouZ, LiuGSmall, 2017, 131603107.

[18]

HuangZ H, LiuT Y, SongY, LiY, LiuX XNanoscale, 2017, 913119.

[19]

MiaoS, LiangK, ZhuJ, YangB, ZhaoD, KongBNano Today, 2020, 33100879.

[20]

ZhengY F, ChenK M, JiangK P, ZhangF R, ZhuG S, XuH RJ. Energy Storage, 2022, 56105995.

[21]

CuiC X, GaoY, LiJ, YangC, LiuM, JinH L, XiaZ H, DaiL M, LeiY, WangJ C, WangSAngew. Chem. Int. Ed., 2020, 597928.

[22]

TianH, LiangJ, LiuJAdv Mater., 2019, 311903886.

[23]

ChenA, WangY, YuY, SunH, LiY, XiaK, LiSJ. Mater. Sci., 2016, 523153.

[24]

LeeW H, MoonJ HACS Appl. Mater. Interfaces, 2014, 613968.

[25]

ChengY, HuangL, XiaoX, YaoB, YuanL, LiT, HuZ, WangB, WanJ, ZhouJNano Energy, 2015, 1566.

[26]

AbbasQ, RazaR, ShabbirI, OlabiA GJ. Sci.-Adv. Mater. Devices, 2019, 4341.

[27]

DingY, LiY C, DaiY J, HanX H, XingB, ZhuL J, QiuK Z, WangS REnergy, 2021, 216119227.

[28]

LvD, ZhangT C, WangD Y, LiJ, WangL JInd. Crops Prod., 2021, 170113750.

[29]

HuM, ZhouH, GanX, YangL, HuangZ-H, WangD-W, KangF, LvRJ. Mater. Chem. A., 2018, 61582.

[30]

LiD, YuC, WangM, ZhangY, PanCRSCAdv., 2014, 455394

[31]

YangZ W, GuoH J, LiF F, LiX H, WangZ X, CuiL Z, WangJ XJ. Energy Chem., 2018, 271390.

[32]

YangF H, ZhangZ A, DuK, ZhaoX X, ChenW, LaiY Q, LiJCarbon, 2015, 9188.

[33]

DuW, WangX N, SunX Q, ZhanJ, ZhangH D, ZhaoX JJ. Electroanal. Chem., 2018, 827213.

[34]

DassanayakeA C, JaroniecMJ. Mater. Chem. A., 2017, 519456.

[35]

YuanC Q, LiuX H, JiaM Y, LuoZ X, YaoJ NJ. Mater. Chem. A, 2015, 33409.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

/