La Doping Towards Mesoporous Microsphere-TiNb2O7 as Lithium-ion Battery Anode with High Durability at Low Temperature
Luxuan Tang , Enjie Dong , Guolong Wu , Bo Hu , Bo Feng , Lina Wu , Hongyu Zhao , Wei Fang , Guangbo Che
Chemical Research in Chinese Universities ›› : 1 -11.
La Doping Towards Mesoporous Microsphere-TiNb2O7 as Lithium-ion Battery Anode with High Durability at Low Temperature
Improving the electronic and ionic dynamics of TiNb2O7 (TNO) is crucial for enhancing its electrochemical properties, low-temperature performance to expand its application areas. In this paper, La0.015-TNO mesoporous microspheres are obtained by a simple solvent-thermal method. X-Ray diffraction and high-resolution transmission electron microscopy analyses show that La doping effectively amplifies the local lattice spacing of TNO, which endows it with a high electron transport rate and an improved Li+ diffusion coefficient. Density functional theory calculations indicate that the excellent performance depends on the narrowing of the band gap as well as the lowering of the ionic diffusion energy barrier. The La0.015-TNO exhibits excellent rate capabilities and durability, achieving up to 2000 cycles with a potential drop of only 0.0098% per cycle at a rate of 20 C (1 C=387.6 mA·h·g−1). A reversible capacity of 135.3 mA·h·g−1 is attained at −35 °C under 0.2 C, and 110.6 mA·h·g−1 is retained after 1100 cycles at −30 °C under 2 C without obvious decay. In addition, the full cell exhibits superior electrochemical performance using commercial lithium iron phosphate as the cathode, delivering 226.3 mA·h·g−1 under 0.2 C in the first discharge.
La0.015-TNO / Mesoporous microsphere / High-rate cycling stability / Low-temperature durability
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH
/
| 〈 |
|
〉 |