PDF
Abstract
Solar photocatalytic degradation and adsorption using metalorganic frameworks (MOFs) offer safe and energy-efficient remediation for water contaminated with small organic pollutants, leveraging their semiconductor-like tunable band structures and inherent porosity. This study reports the de novo synthesis of a visible-light-responsive Ti@Ce MOF heterojunction composite for synergistic photocatalytic degradation and adsorption of recalcitrant organic contaminants. An in-situ growth strategy deposited NO.-functionalized UiO-66(Ce) onto NH2-modified MIL-125, forming an S-scheme heterojunction engineered for efficient visible-light-driven hydrogen peroxide (H2O2) generation. This in-situ photogenerated H2O2 acts as a potent oxidant, effectively degrading tetracycline. A significantly enhanced photocatalytic degradation rate constant (k) for tetracycline was observed, indicating boosted catalytic activity. Mechanistic analysis underscores the critical role of the S-scheme heterojunction in promoting charge carrier separation and enhancing H2O2 production, thereby efficiently driving organic pollutant oxidative degradation. This work provides a novel strategic framework for designing multifunctional MOF composites, advancing high-performance, sustainable water purification technologies.
Keywords
Metal-organic framework (MOF)
/
S-Scheme heterojunction
/
Tetracycline
/
Photodegradation
Cite this article
Download citation ▾
Tianxu Feng, Wei Shan, Yongzhou Zhang, Haibo Huang, Hua Tang.
S-Scheme Ti@Ce MOF Heterojunction for Enhanced Visible-light Photocatalytic Degradation.
Chemical Research in Chinese Universities 1-10 DOI:10.1007/s40242-025-5119-4
| [1] |
Rasool R T, Ashraf G A, Pasha M, Saleem M F, Ghernaout D, Fadhali M M, Guo H. J. Mater. Sci. Technol., 2023, 153: 41
|
| [2] |
Zhou C, Zhou M, Lu K, Huang W, Yu C, Yang K. J. Mater. Sci. Technol., 2025, 233: 166
|
| [3] |
Tian T, Wang W, Wang Y, Li K, Li Y, Fu W, Ding Y. Chinese J. Catal., 2024, 67: 176
|
| [4] |
Wu F-L, Yuan C-Z, Li C-H, Zhou C-L, Zhao H-R, Chen T-C, Xin L, WangL.-X Z X, Ye S, Chen Y. Rare Metals, 2025, 44: 5512
|
| [5] |
Ouyang Z L, Yang Y, Zhang C, Zhu S M, Qin L, Wang W J, He D H, Zhou Y, Luo H Z, Qin F Z. J. Mater. Chem. A, 2021, 9: 13402
|
| [6] |
Meng D, Zhu Q, Wei Y, Zhen S, Duan R, Chen C, Song W, Zhao J. Chinese J. Catal., 2020, 41: 1474
|
| [7] |
Wu J W, Xie Q J, Zhang C L, Shi H F. Acta Phys-Chim. Sin., 2025, 41: 100050
|
| [8] |
Jiao X C, Zheng K, Hu Z X, Zhu S, Sun Y F, Xie Y. Adv. Mater., 2021, 33: 2005192
|
| [9] |
Zhang Z, Wang M, Zhou H R, Wang F. J. Am. Chem. Soc., 2021, 143: 6533
|
| [10] |
Gao Y-R, Zhao H-Y, Liu M-T, Liu Q-N, Wang Y-Y, Li L-L, Yuan J-W, Song Y-Y, Yang F. Rare Metals, 2025, 44: 1122
|
| [11] |
Fu D, Zhang F, Wang L, Yang F, Liang X. Chinese J. Catal., 2015, 36: 952
|
| [12] |
Liu B, Meng K, Cheng B, Wang L, Liang G, Bie C. J. Mater. Sci. Technol., 2025, 231: 286
|
| [13] |
Liu B, Cai J, Zhang J, Tan H, Cheng B, Xu J. Chinese J. Catal., 2023, 51: 204
|
| [14] |
Wan S-J, Hou Y-T, Wang W, Luo G-Q, Wang C-B, Tu R, Cao S-W. Rare Metals, 2024, 43: 5880
|
| [15] |
Kshirsagar A S, Khanna P K. Mater. Chem. Front., 2019, 3: 437
|
| [16] |
Cai H, Wang B, Xiong L, Bi J, Yuan L, Yang G, Yang S. Appl. Catal. B: Environ., 2019, 256: 117853
|
| [17] |
Zhao W, Feng Y, Huang H B, Zhou P C, Li J, Zhang L L, Dai B L, Xu J M, Zhu F X, Sheng N, Leung D Y C. Appl. Catal. B: Environ., 2019, 245: 448
|
| [18] |
Liang S, Sui G Z, Li J L, Guo D X, Luo Z, Xu R P, Yao H, Wang C, Chen S J. Int. J. Hydrogen Energy, 2022, 47: 11190
|
| [19] |
Wang W, Wu Y, Zhang J, Meng K, Li J, Wang L, Liu Q. Acta Phys-Chim. Sin., 2025, 41: 100093
|
| [20] |
Zhang L Y, Zhang J J, Yu H G, Yu J G. Adv. Mater., 2022, 34: 2107668
|
| [21] |
Guo L, Chen Y, Ren Z, Li X, Zhang Q, Wu J, Li Y, Liu W, Li P, Fu Y, Ma J. Ultrason. Sonochem., 2021, 81: 105849
|
| [22] |
Su K, Yin W, Liu X, Cai S, He P, Xiao Y, Ren T. Inorg. Chem. Commun., 2025, 178: 114488
|
| [23] |
Wu S, Zhao H-J, Li C-F, Liu J, Dong W, Zhao H, Wang C, Liu Y, Hu Z-Y, Chen L, Li Y, Su B-L. J. Colloid Interf. Sci., 2019, 538: 99
|
| [24] |
Li C-C, Gao M-Y, Sun X-J, Tang H-L, Dong H, Zhang F-M. Appl. Catal. B: Environ., 2020, 266: 118586
|
| [25] |
Thote J, Aiyappa H B, Deshp A, Díaz Díaz D, Kurungot S, Banerjee R. Chem—Eur. J., 2014, 20: 15961
|
| [26] |
Yan H, Liu Y-H, Yang Y, Zhang H-Y, Liu X-R, Wei J-Z, Bai L-L, Wang Y, Zhang F-M. Chem. Eng. J., 2022, 431: 133404
|
| [27] |
He B W, Xiao P, Wan S J, Zhang J J, Chen T, Zhang L Y, Yu J G. Angew. Chem. Int. Ed., 2023, 62: e202313172
|
| [28] |
Wang L B, Cheng B, Zhang L Y, Yu J G. Small, 2021, 17: 2103447
|
| [29] |
Acharya L, Swain G, Mishra B P, Acharya R, Parida K. ACS Appl. Energy Mater., 2022, 5: 2838
|
| [30] |
Li M, Liu Y, Yang S, Zhang Y, Wei L, Zhu B. J. Mater. Sci. Technol., 2025, 224: 245
|
| [31] |
Song M, Song X, Liu X, Zhou W, Huo P. Chinese J. Catal., 2023, 51: 180
|
| [32] |
Du M, Zhang S, Xing Z, Li Z, Yin J, Zou J, Zhu Q, Zhou W. Langmuir, 2019, 35: 7887
|
| [33] |
Li S, Rong K, Wang X, Shen C, Yang F, Zhang Q. Acta Phys-Chim. Sin., 2024, 40: 2403005
|
| [34] |
Wu Y, Cheng C, Qi K, Cheng B, Zhang J, Yu J, Zhang L. Acta Phys-Chim. Sin., 2024, 40: 2406027
|
| [35] |
Mengdie L, Zumin W, Jian Q, Ranbo Y. Chem. J. Chinese Universities, 2023, 44: 20230196
|
| [36] |
Jindi Y, Chuanbiao B. Chem. Syn., 2024, 5: 12
|
| [37] |
Zhu P, Lin J, Xie L, Duan M, Chen D, Luo D, Wu Y. Langmuir, 2021, 37: 13309
|
| [38] |
Tripathy S P, Subudhi S, Ray A, Behera P, Swain G, Chakraborty M, Parida K. Langmuir, 2023, 39: 7294
|
| [39] |
Liu J H, Zhang B B, Huang Z Y, Wang W Y, Xi X G, Dong P Y. Langmuir, 2023, 39: 17458
|
| [40] |
Liu S, Sun Y-Y, Wu Y-P, Wang Y-J, Pi Q, Li S, Li Y-S, Li D-S. ACS Appl. Mater. Interfaces, 2021, 13: 26472
|
| [41] |
Liu S, Wang X, Yu H-G, Wu Y-P, Li B, Lan Y-Q, Wu T, Zhang J, Li D-S. Rare Metals, 2021, 40: 489
|
| [42] |
Nguyen H L. Adv. Energy Mater., 2020, 10: 2002091
|
| [43] |
Wu J, Fang X, Dong H, Lian L, Ma N, Dai W. J. Alloy. Compd., 2021, 877: 160262
|
| [44] |
Zhang L, Yang Q, Jiang Y, Yu L, Song N, Zhao D, Sui L, Dong L. Desalination, 2024, 572: 117140
|
| [45] |
Wang X, Kong F, Li Y, Li Q, Wang C, Zhang J, Xi M. Sci. Total Environ., 2021, 783: 147158
|
| [46] |
Sikandaier A, Zhu Y, Yang D. Chinese J. Catal., 2024, 43: 100242
|
| [47] |
Zhang H, Yao X, Shan W, Liu Y, Tang H. SCMs, 2024, 67: 532
|
| [48] |
Zhu Y, Ren J, Huang G, Dong C-L, Huang Y-C, Lu P, Tang H, Liu Y, Shen S, Yang D. Adv. Funct. Mater, 2024, 34: 2311623
|
| [49] |
Zhang K, Hu H, Shi L, Jia B, Huang H, Han X, Sun X, Ma T. Small Sci., 2021, 1: 2100060
|
| [50] |
Nguyen V H, Van Tan L, Lee T, Nguyen T D. Sustain. Chem. Pharm., 2021, 20: 100385
|
| [51] |
Zhang Y, Ma F, Ling M, Zheng H, Wu Y, Li L. Chem. Eng. J., 2023, 464: 142762
|
| [52] |
Huang Q, Hu Y, Pei Y, Zhang J, Fu M. Appl. Catal. B: Environ., 2019, 259: 118106
|
| [53] |
Farrando-Pérez J, Martinez-Navarrete G, Gandara-Loe J, Reljic S, Garcia-Ripoll A, Fernandez E, Silvestre-Albero J. Inorg. Chem., 2022, 61: 18861
|
| [54] |
Hirakawa H, Shiota S, Shiraishi Y, Sakamoto H, Ichikawa S, Hirai T. ACS Catal., 2016, 6: 4976
|
| [55] |
Xu L, Li L, Hu Z, Yu J C. J. Catal., 2023, 418: 300
|
| [56] |
Wu Y, Yang Y, Gu M, Bie C, Tan H, Cheng B, Xu J. Chin. J. Catal., 2023, 53: 123
|
| [57] |
Isaka Y, Kondo Y, Kawase Y, Kuwahara Y, Mori K, Yamashita H. Chem. Comm., 2018, 54: 9270
|
| [58] |
Deng J H, Luo J, Mao Y L, Lai S, Gong Y N, Zhong D C, Lu T B. Sci. Adv., 2020, 6: eaax9976
|
RIGHTS & PERMISSIONS
Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH