S-Scheme Ti@Ce MOF Heterojunction for Enhanced Visible-light Photocatalytic Degradation

Tianxu Feng , Wei Shan , Yongzhou Zhang , Haibo Huang , Hua Tang

Chemical Research in Chinese Universities ›› : 1 -10.

PDF
Chemical Research in Chinese Universities ›› :1 -10. DOI: 10.1007/s40242-025-5119-4
Article
research-article

S-Scheme Ti@Ce MOF Heterojunction for Enhanced Visible-light Photocatalytic Degradation

Author information +
History +
PDF

Abstract

Solar photocatalytic degradation and adsorption using metalorganic frameworks (MOFs) offer safe and energy-efficient remediation for water contaminated with small organic pollutants, leveraging their semiconductor-like tunable band structures and inherent porosity. This study reports the de novo synthesis of a visible-light-responsive Ti@Ce MOF heterojunction composite for synergistic photocatalytic degradation and adsorption of recalcitrant organic contaminants. An in-situ growth strategy deposited NO.-functionalized UiO-66(Ce) onto NH2-modified MIL-125, forming an S-scheme heterojunction engineered for efficient visible-light-driven hydrogen peroxide (H2O2) generation. This in-situ photogenerated H2O2 acts as a potent oxidant, effectively degrading tetracycline. A significantly enhanced photocatalytic degradation rate constant (k) for tetracycline was observed, indicating boosted catalytic activity. Mechanistic analysis underscores the critical role of the S-scheme heterojunction in promoting charge carrier separation and enhancing H2O2 production, thereby efficiently driving organic pollutant oxidative degradation. This work provides a novel strategic framework for designing multifunctional MOF composites, advancing high-performance, sustainable water purification technologies.

Keywords

Metal-organic framework (MOF) / S-Scheme heterojunction / Tetracycline / Photodegradation

Cite this article

Download citation ▾
Tianxu Feng, Wei Shan, Yongzhou Zhang, Haibo Huang, Hua Tang. S-Scheme Ti@Ce MOF Heterojunction for Enhanced Visible-light Photocatalytic Degradation. Chemical Research in Chinese Universities 1-10 DOI:10.1007/s40242-025-5119-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rasool R T, Ashraf G A, Pasha M, Saleem M F, Ghernaout D, Fadhali M M, Guo H. J. Mater. Sci. Technol., 2023, 153: 41

[2]

Zhou C, Zhou M, Lu K, Huang W, Yu C, Yang K. J. Mater. Sci. Technol., 2025, 233: 166

[3]

Tian T, Wang W, Wang Y, Li K, Li Y, Fu W, Ding Y. Chinese J. Catal., 2024, 67: 176

[4]

Wu F-L, Yuan C-Z, Li C-H, Zhou C-L, Zhao H-R, Chen T-C, Xin L, WangL.-X Z X, Ye S, Chen Y. Rare Metals, 2025, 44: 5512

[5]

Ouyang Z L, Yang Y, Zhang C, Zhu S M, Qin L, Wang W J, He D H, Zhou Y, Luo H Z, Qin F Z. J. Mater. Chem. A, 2021, 9: 13402

[6]

Meng D, Zhu Q, Wei Y, Zhen S, Duan R, Chen C, Song W, Zhao J. Chinese J. Catal., 2020, 41: 1474

[7]

Wu J W, Xie Q J, Zhang C L, Shi H F. Acta Phys-Chim. Sin., 2025, 41: 100050

[8]

Jiao X C, Zheng K, Hu Z X, Zhu S, Sun Y F, Xie Y. Adv. Mater., 2021, 33: 2005192

[9]

Zhang Z, Wang M, Zhou H R, Wang F. J. Am. Chem. Soc., 2021, 143: 6533

[10]

Gao Y-R, Zhao H-Y, Liu M-T, Liu Q-N, Wang Y-Y, Li L-L, Yuan J-W, Song Y-Y, Yang F. Rare Metals, 2025, 44: 1122

[11]

Fu D, Zhang F, Wang L, Yang F, Liang X. Chinese J. Catal., 2015, 36: 952

[12]

Liu B, Meng K, Cheng B, Wang L, Liang G, Bie C. J. Mater. Sci. Technol., 2025, 231: 286

[13]

Liu B, Cai J, Zhang J, Tan H, Cheng B, Xu J. Chinese J. Catal., 2023, 51: 204

[14]

Wan S-J, Hou Y-T, Wang W, Luo G-Q, Wang C-B, Tu R, Cao S-W. Rare Metals, 2024, 43: 5880

[15]

Kshirsagar A S, Khanna P K. Mater. Chem. Front., 2019, 3: 437

[16]

Cai H, Wang B, Xiong L, Bi J, Yuan L, Yang G, Yang S. Appl. Catal. B: Environ., 2019, 256: 117853

[17]

Zhao W, Feng Y, Huang H B, Zhou P C, Li J, Zhang L L, Dai B L, Xu J M, Zhu F X, Sheng N, Leung D Y C. Appl. Catal. B: Environ., 2019, 245: 448

[18]

Liang S, Sui G Z, Li J L, Guo D X, Luo Z, Xu R P, Yao H, Wang C, Chen S J. Int. J. Hydrogen Energy, 2022, 47: 11190

[19]

Wang W, Wu Y, Zhang J, Meng K, Li J, Wang L, Liu Q. Acta Phys-Chim. Sin., 2025, 41: 100093

[20]

Zhang L Y, Zhang J J, Yu H G, Yu J G. Adv. Mater., 2022, 34: 2107668

[21]

Guo L, Chen Y, Ren Z, Li X, Zhang Q, Wu J, Li Y, Liu W, Li P, Fu Y, Ma J. Ultrason. Sonochem., 2021, 81: 105849

[22]

Su K, Yin W, Liu X, Cai S, He P, Xiao Y, Ren T. Inorg. Chem. Commun., 2025, 178: 114488

[23]

Wu S, Zhao H-J, Li C-F, Liu J, Dong W, Zhao H, Wang C, Liu Y, Hu Z-Y, Chen L, Li Y, Su B-L. J. Colloid Interf. Sci., 2019, 538: 99

[24]

Li C-C, Gao M-Y, Sun X-J, Tang H-L, Dong H, Zhang F-M. Appl. Catal. B: Environ., 2020, 266: 118586

[25]

Thote J, Aiyappa H B, Deshp A, Díaz Díaz D, Kurungot S, Banerjee R. Chem—Eur. J., 2014, 20: 15961

[26]

Yan H, Liu Y-H, Yang Y, Zhang H-Y, Liu X-R, Wei J-Z, Bai L-L, Wang Y, Zhang F-M. Chem. Eng. J., 2022, 431: 133404

[27]

He B W, Xiao P, Wan S J, Zhang J J, Chen T, Zhang L Y, Yu J G. Angew. Chem. Int. Ed., 2023, 62: e202313172

[28]

Wang L B, Cheng B, Zhang L Y, Yu J G. Small, 2021, 17: 2103447

[29]

Acharya L, Swain G, Mishra B P, Acharya R, Parida K. ACS Appl. Energy Mater., 2022, 5: 2838

[30]

Li M, Liu Y, Yang S, Zhang Y, Wei L, Zhu B. J. Mater. Sci. Technol., 2025, 224: 245

[31]

Song M, Song X, Liu X, Zhou W, Huo P. Chinese J. Catal., 2023, 51: 180

[32]

Du M, Zhang S, Xing Z, Li Z, Yin J, Zou J, Zhu Q, Zhou W. Langmuir, 2019, 35: 7887

[33]

Li S, Rong K, Wang X, Shen C, Yang F, Zhang Q. Acta Phys-Chim. Sin., 2024, 40: 2403005

[34]

Wu Y, Cheng C, Qi K, Cheng B, Zhang J, Yu J, Zhang L. Acta Phys-Chim. Sin., 2024, 40: 2406027

[35]

Mengdie L, Zumin W, Jian Q, Ranbo Y. Chem. J. Chinese Universities, 2023, 44: 20230196

[36]

Jindi Y, Chuanbiao B. Chem. Syn., 2024, 5: 12

[37]

Zhu P, Lin J, Xie L, Duan M, Chen D, Luo D, Wu Y. Langmuir, 2021, 37: 13309

[38]

Tripathy S P, Subudhi S, Ray A, Behera P, Swain G, Chakraborty M, Parida K. Langmuir, 2023, 39: 7294

[39]

Liu J H, Zhang B B, Huang Z Y, Wang W Y, Xi X G, Dong P Y. Langmuir, 2023, 39: 17458

[40]

Liu S, Sun Y-Y, Wu Y-P, Wang Y-J, Pi Q, Li S, Li Y-S, Li D-S. ACS Appl. Mater. Interfaces, 2021, 13: 26472

[41]

Liu S, Wang X, Yu H-G, Wu Y-P, Li B, Lan Y-Q, Wu T, Zhang J, Li D-S. Rare Metals, 2021, 40: 489

[42]

Nguyen H L. Adv. Energy Mater., 2020, 10: 2002091

[43]

Wu J, Fang X, Dong H, Lian L, Ma N, Dai W. J. Alloy. Compd., 2021, 877: 160262

[44]

Zhang L, Yang Q, Jiang Y, Yu L, Song N, Zhao D, Sui L, Dong L. Desalination, 2024, 572: 117140

[45]

Wang X, Kong F, Li Y, Li Q, Wang C, Zhang J, Xi M. Sci. Total Environ., 2021, 783: 147158

[46]

Sikandaier A, Zhu Y, Yang D. Chinese J. Catal., 2024, 43: 100242

[47]

Zhang H, Yao X, Shan W, Liu Y, Tang H. SCMs, 2024, 67: 532

[48]

Zhu Y, Ren J, Huang G, Dong C-L, Huang Y-C, Lu P, Tang H, Liu Y, Shen S, Yang D. Adv. Funct. Mater, 2024, 34: 2311623

[49]

Zhang K, Hu H, Shi L, Jia B, Huang H, Han X, Sun X, Ma T. Small Sci., 2021, 1: 2100060

[50]

Nguyen V H, Van Tan L, Lee T, Nguyen T D. Sustain. Chem. Pharm., 2021, 20: 100385

[51]

Zhang Y, Ma F, Ling M, Zheng H, Wu Y, Li L. Chem. Eng. J., 2023, 464: 142762

[52]

Huang Q, Hu Y, Pei Y, Zhang J, Fu M. Appl. Catal. B: Environ., 2019, 259: 118106

[53]

Farrando-Pérez J, Martinez-Navarrete G, Gandara-Loe J, Reljic S, Garcia-Ripoll A, Fernandez E, Silvestre-Albero J. Inorg. Chem., 2022, 61: 18861

[54]

Hirakawa H, Shiota S, Shiraishi Y, Sakamoto H, Ichikawa S, Hirai T. ACS Catal., 2016, 6: 4976

[55]

Xu L, Li L, Hu Z, Yu J C. J. Catal., 2023, 418: 300

[56]

Wu Y, Yang Y, Gu M, Bie C, Tan H, Cheng B, Xu J. Chin. J. Catal., 2023, 53: 123

[57]

Isaka Y, Kondo Y, Kawase Y, Kuwahara Y, Mori K, Yamashita H. Chem. Comm., 2018, 54: 9270

[58]

Deng J H, Luo J, Mao Y L, Lai S, Gong Y N, Zhong D C, Lu T B. Sci. Adv., 2020, 6: eaax9976

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

PDF

30

Accesses

0

Citation

Detail

Sections
Recommended

/