Holmium-engineered Graphitic Carbon Nitride via Molten Salt Synthesis for CO2 Photoreduction

Siying Xie , Renwu Gao , Zhichao Yi , Kun Gong , Weiya Huang , Kangqiang Lu , Changlin Yu , Kai Yang

Chemical Research in Chinese Universities ›› : 1 -9.

PDF
Chemical Research in Chinese Universities ›› :1 -9. DOI: 10.1007/s40242-025-5118-5
Article
research-article

Holmium-engineered Graphitic Carbon Nitride via Molten Salt Synthesis for CO2 Photoreduction

Author information +
History +
PDF

Abstract

Under the impetus of the “dual carbon” strategy, photocatalytic CO2 reduction technology has attracted significant attention due to its sustainable characteristics. In this study holmium-doping graphitic carbon nitride (Ho/g-C3N4) photocatalysts were synthesized via a molten salt method and investigated for enhanced CO2 photoreduction. The incorporation of Ho into the g-C3N4 can induce an increase in specific surface area and a red-shift in absorption edge from 474 nm to 488 nm with a reduced bandgap from 2.72 eV to 2.33 eV. The optimal 3% Ho/g-C3N4 exhibits an exceptional CO production rate of 74.1 µmol·g−1·h−1 with 92.6% selectivity under visible light irradiation (λ>420 nm). Mott-Schottky measurement indicates a 120 mV negative shift in conduction band potential (−0.59 V vs. RHE). This enhancement in photocatalytic performance can be attributed to the created localized states within the bandgap for promoting electron transitions, the improved charge separation, the enhanced light absorption and the intensified reducing capacity, which facilitate the overall reaction process. This work provides the reference for developing efficient CO2 reduction photocatalysts.

Keywords

Photocatalysis / CO2 reduction / Ho/g-C3N4 / Molten salt

Cite this article

Download citation ▾
Siying Xie, Renwu Gao, Zhichao Yi, Kun Gong, Weiya Huang, Kangqiang Lu, Changlin Yu, Kai Yang. Holmium-engineered Graphitic Carbon Nitride via Molten Salt Synthesis for CO2 Photoreduction. Chemical Research in Chinese Universities 1-9 DOI:10.1007/s40242-025-5118-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

FuC H, LiD, ZhangJ W, GuoW, YangH, ZhaoB, ChenZ M, FuX, LiangZ Q, JiangLChem. Res. Chinese Universities, 2023, 39891.

[2]

RenC Y, BaiR, ChenW, LiJ P, ZhouX D, TianX C, ZhaoFChem. Res. Chinese Universities, 2023, 39389.

[3]

LiuA Y, CohenM LScience, 1989, 245841.

[4]

JinR R, YouJ G, ZhangQ, LiuD, HuS Z, GuiJ ZChem. Res. Chinese Universities, 2014, 301706

[5]

ZhangY J, ThomasA, AntoniettiM, WangX CJ. Am. Chem. Soc., 2009, 13150.

[6]

YanS R, ZhangL, ShiS H, RenY Y, LiuW H, LiY J, DuanF, LuS L, DuM L, ChenM QChem. Res. Chinese Universities, 2025, 41121.

[7]

IkramM, KhanM I, RazaA, ImranM, Ul-HamidA, AliSPhysica E, 2020, 124114246.

[8]

ZhaoB B, ZhongW, ChenF, WangP, BieC B, YuH GChinese J. Catal., 2023, 52127.

[9]

TengY, ChenJ H, HuangY H, ZhouZ C, WangX D, KuangD B, ChenH YAppl. Catal. B-Environ., 2023, 335122889.

[10]

TengY, NingL L, TanC W, ZhaoJ, XiongY W, ZouH L, YeZ M, ZhangX M, KuangD B, LiY JAdv. Funct. Mater., 2025, 352414892.

[11]

ZhouC S, ZhouM, LuK Q, HuangW Y, YuC L, YangKJ. Mater. Sci. Technol., 2025, 233166.

[12]

JianL, ZhouN, SangS K, MengS G, LowJX, LiYChinese J. Catal., 2024, 65163.

[13]

MengL H, ZhaoC, ChuH Y, LiY H, FuH F, WangP, WangC C, HuangH WChinese J. Catal., 2024, 59346.

[14]

WangF L, LiX W, LuK Q, ZhouM, YuC L, YangKChinese J. Catal., 2024, 63190.

[15]

WangZ H, ZouG J, ParkJ H, ZhangKSci. China Mater., 2024, 67397.

[16]

WangK N, YangT T, DawsonG, ZhangJ F, ShaoC F, DaiKChem. Res. Chinese Universities, 2025, 41123

[17]

LuY, WangH J, YuP F, YuanY F, Shahbazian-YassarR, ShengY, WuS Y, TuW G, LiuG Y, KraftM, XuRNano Energy, 2020, 76105158.

[18]

YaoQ F, LiuP, YangF, ZhuY L, PanY G, XueH T, MaoW W, ChuLSci. China Mater., 2024, 673160.

[19]

WangX Y, ZhaoZ W, ZahraK, LiJ J, ZhangZ CChem. Res. Chinese Universities, 2023, 39580.

[20]

YuZ P, LiY F, Torres-PintoA, LaGrowA P, DiaconescuV M, SimonelliL, SampaioM J, BondarchukO, AmorimI, AraujoA, SilvaA M T, SilvaC G, FariaJ L, LiuL FAppl. Catal. B-Environ., 2022, 310121318.

[21]

LiuX F, LuoY N, LingC C, ShiY B, ZhanG M, LiH, GuH Y, WeiK, GuoF R, AiZ H, ZhangL ZAppl. Catal. B-Environ., 2022, 301120766.

[22]

ZhengX G, DuJ C, LiZ L, FuX J, YouY H, LiuYJ. Synth. Cryst., 2017, 46950

[23]

LiuG M, DongG H, ZengY B, WangC YChinese J. Catal., 2020, 411564.

[24]

ShanL S, LiuY, ChenY, ZhangX J, DaiH Z, XuD H, YuB Z, ZhangY, ChenS W, HeT, OuyangX PACS Sustainable Chem. Eng., 2025, 13311.

[25]

HuangX, WangZ Y, ZhongY, JiangY, ChenS X, ChenJ W, DengS G, WangJChem. Eng. J., 2025, 507160812.

[26]

PanY, LiuX J, ZhangW, ShaoB B, LiuZ F, LiangQ H, WuT, HeQ Y, HuangJ, PengZ, LiuY, ZhaoC HChem. Eng. J., 2022, 427132032.

[27]

ZhengL F, ZhaoJ Q, DuZ X, ZongB N, LiuH CSci. China Chem., 2017, 60950.

[28]

XiaoN, LiS S, LiuS, XuB R, LiY D, GaoY Q, GeL, LuG WChin. J. Catal., 2019, 40353

[29]

YoneyamaH, YamashitaY, TamuraHNature, 1979, 282817.

[30]

MuP, ZhouM, YangK, ZhouC S, MiY, YuZ Z, LuK Q, LiZ Q, OuyangS B, HuangW Y, YuC LSustainable Energy Fuels, 2021, 55814.

[31]

ZhaoS, FangJ S, WangY Y, ZhangY W, ZhuoS PJ. Colloid Interface Sci., 2020, 561601.

[32]

ZhaoZ Y, WangM Z, MaP J, ZhengY P, ChenJ Y, LiH Q, ZhangX B, ZhengK, KuangQ, XieZ XAppl. Catal. B-Environ., 2021, 291120101.

[33]

ZengB Y, XiaT T, SunY L, ZhangP, WangW J, ZhaoKChem. Res. Chinese Universities, 2024, 40451.

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

PDF

88

Accesses

0

Citation

Detail

Sections
Recommended

/