PDF
Abstract
Under the impetus of the “dual carbon” strategy, photocatalytic CO2 reduction technology has attracted significant attention due to its sustainable characteristics. In this study holmium-doping graphitic carbon nitride (Ho/g-C3N4) photocatalysts were synthesized via a molten salt method and investigated for enhanced CO2 photoreduction. The incorporation of Ho into the g-C3N4 can induce an increase in specific surface area and a red-shift in absorption edge from 474 nm to 488 nm with a reduced bandgap from 2.72 eV to 2.33 eV. The optimal 3% Ho/g-C3N4 exhibits an exceptional CO production rate of 74.1 µmol·g−1·h−1 with 92.6% selectivity under visible light irradiation (λ>420 nm). Mott-Schottky measurement indicates a 120 mV negative shift in conduction band potential (−0.59 V vs. RHE). This enhancement in photocatalytic performance can be attributed to the created localized states within the bandgap for promoting electron transitions, the improved charge separation, the enhanced light absorption and the intensified reducing capacity, which facilitate the overall reaction process. This work provides the reference for developing efficient CO2 reduction photocatalysts.
Keywords
Photocatalysis
/
CO2 reduction
/
Ho/g-C3N4
/
Molten salt
Cite this article
Download citation ▾
Siying Xie, Renwu Gao, Zhichao Yi, Kun Gong, Weiya Huang, Kangqiang Lu, Changlin Yu, Kai Yang.
Holmium-engineered Graphitic Carbon Nitride via Molten Salt Synthesis for CO2 Photoreduction.
Chemical Research in Chinese Universities 1-9 DOI:10.1007/s40242-025-5118-5
| [1] |
FuC H, LiD, ZhangJ W, GuoW, YangH, ZhaoB, ChenZ M, FuX, LiangZ Q, JiangLChem. Res. Chinese Universities, 2023, 39891.
|
| [2] |
RenC Y, BaiR, ChenW, LiJ P, ZhouX D, TianX C, ZhaoFChem. Res. Chinese Universities, 2023, 39389.
|
| [3] |
LiuA Y, CohenM LScience, 1989, 245841.
|
| [4] |
JinR R, YouJ G, ZhangQ, LiuD, HuS Z, GuiJ ZChem. Res. Chinese Universities, 2014, 301706
|
| [5] |
ZhangY J, ThomasA, AntoniettiM, WangX CJ. Am. Chem. Soc., 2009, 13150.
|
| [6] |
YanS R, ZhangL, ShiS H, RenY Y, LiuW H, LiY J, DuanF, LuS L, DuM L, ChenM QChem. Res. Chinese Universities, 2025, 41121.
|
| [7] |
IkramM, KhanM I, RazaA, ImranM, Ul-HamidA, AliSPhysica E, 2020, 124114246.
|
| [8] |
ZhaoB B, ZhongW, ChenF, WangP, BieC B, YuH GChinese J. Catal., 2023, 52127.
|
| [9] |
TengY, ChenJ H, HuangY H, ZhouZ C, WangX D, KuangD B, ChenH YAppl. Catal. B-Environ., 2023, 335122889.
|
| [10] |
TengY, NingL L, TanC W, ZhaoJ, XiongY W, ZouH L, YeZ M, ZhangX M, KuangD B, LiY JAdv. Funct. Mater., 2025, 352414892.
|
| [11] |
ZhouC S, ZhouM, LuK Q, HuangW Y, YuC L, YangKJ. Mater. Sci. Technol., 2025, 233166.
|
| [12] |
JianL, ZhouN, SangS K, MengS G, LowJX, LiYChinese J. Catal., 2024, 65163.
|
| [13] |
MengL H, ZhaoC, ChuH Y, LiY H, FuH F, WangP, WangC C, HuangH WChinese J. Catal., 2024, 59346.
|
| [14] |
WangF L, LiX W, LuK Q, ZhouM, YuC L, YangKChinese J. Catal., 2024, 63190.
|
| [15] |
WangZ H, ZouG J, ParkJ H, ZhangKSci. China Mater., 2024, 67397.
|
| [16] |
WangK N, YangT T, DawsonG, ZhangJ F, ShaoC F, DaiKChem. Res. Chinese Universities, 2025, 41123
|
| [17] |
LuY, WangH J, YuP F, YuanY F, Shahbazian-YassarR, ShengY, WuS Y, TuW G, LiuG Y, KraftM, XuRNano Energy, 2020, 76105158.
|
| [18] |
YaoQ F, LiuP, YangF, ZhuY L, PanY G, XueH T, MaoW W, ChuLSci. China Mater., 2024, 673160.
|
| [19] |
WangX Y, ZhaoZ W, ZahraK, LiJ J, ZhangZ CChem. Res. Chinese Universities, 2023, 39580.
|
| [20] |
YuZ P, LiY F, Torres-PintoA, LaGrowA P, DiaconescuV M, SimonelliL, SampaioM J, BondarchukO, AmorimI, AraujoA, SilvaA M T, SilvaC G, FariaJ L, LiuL FAppl. Catal. B-Environ., 2022, 310121318.
|
| [21] |
LiuX F, LuoY N, LingC C, ShiY B, ZhanG M, LiH, GuH Y, WeiK, GuoF R, AiZ H, ZhangL ZAppl. Catal. B-Environ., 2022, 301120766.
|
| [22] |
ZhengX G, DuJ C, LiZ L, FuX J, YouY H, LiuYJ. Synth. Cryst., 2017, 46950
|
| [23] |
LiuG M, DongG H, ZengY B, WangC YChinese J. Catal., 2020, 411564.
|
| [24] |
ShanL S, LiuY, ChenY, ZhangX J, DaiH Z, XuD H, YuB Z, ZhangY, ChenS W, HeT, OuyangX PACS Sustainable Chem. Eng., 2025, 13311.
|
| [25] |
HuangX, WangZ Y, ZhongY, JiangY, ChenS X, ChenJ W, DengS G, WangJChem. Eng. J., 2025, 507160812.
|
| [26] |
PanY, LiuX J, ZhangW, ShaoB B, LiuZ F, LiangQ H, WuT, HeQ Y, HuangJ, PengZ, LiuY, ZhaoC HChem. Eng. J., 2022, 427132032.
|
| [27] |
ZhengL F, ZhaoJ Q, DuZ X, ZongB N, LiuH CSci. China Chem., 2017, 60950.
|
| [28] |
XiaoN, LiS S, LiuS, XuB R, LiY D, GaoY Q, GeL, LuG WChin. J. Catal., 2019, 40353
|
| [29] |
YoneyamaH, YamashitaY, TamuraHNature, 1979, 282817.
|
| [30] |
MuP, ZhouM, YangK, ZhouC S, MiY, YuZ Z, LuK Q, LiZ Q, OuyangS B, HuangW Y, YuC LSustainable Energy Fuels, 2021, 55814.
|
| [31] |
ZhaoS, FangJ S, WangY Y, ZhangY W, ZhuoS PJ. Colloid Interface Sci., 2020, 561601.
|
| [32] |
ZhaoZ Y, WangM Z, MaP J, ZhengY P, ChenJ Y, LiH Q, ZhangX B, ZhengK, KuangQ, XieZ XAppl. Catal. B-Environ., 2021, 291120101.
|
| [33] |
ZengB Y, XiaT T, SunY L, ZhangP, WangW J, ZhaoKChem. Res. Chinese Universities, 2024, 40451.
|
RIGHTS & PERMISSIONS
Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.