Tungsten-doped SrTiO3 for Boosting Photocatalytic Removal of Cr(VI) and Antibiotic Tetracycline: Charge Redistribution and Band Engineering

Bin Liu , Lin Cheng , Yi Zhang , Hong Du , Lingcong Li , Yuhan Li , Jianmin Luo

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (4) : 880 -892.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (4) : 880 -892. DOI: 10.1007/s40242-025-5116-7
Article
research-article

Tungsten-doped SrTiO3 for Boosting Photocatalytic Removal of Cr(VI) and Antibiotic Tetracycline: Charge Redistribution and Band Engineering

Author information +
History +
PDF

Abstract

The simultaneous photocatalytic removal of hexavalent chromium [Cr(VI)] and tetracycline (TC) presents a critical challenge in wastewater remediation due to their synergistic environmental persistence and toxicity. This study demonstrates tungsten-doped SrTiO3 (W-SrTiO3) as an efficient dual-functional photocatalyst through strategic electronic structure engineering. By substituting B sites (Ti sites) of SrTiO3 (perovskite-structured, ABO3-type) with high-valence W6+ ions, controlled doping induces localized charge redistribution within the SrTiO3 lattice, creating electron-trapping sites at dopant positions to prolong carrier lifetimes. Concurrently, oxygen vacancy engineering suppresses mid-gap recombination centers, synergistically enhancing charge separation efficiency. Band structure modulation widens the bandgap (3.31→3.36 eV) through coordinated upward valence band (+1.79→+1.82 V vs. NHE) and downward conduction band (-1.52→-1.54 V) shifts, thereby extending the thermodynamic driving force for redox reactions. The elevated conduction band strengthens electron reduction capacity for Cr(VI), while the upshifted valence band retains sufficient oxidative potential for TC mineralization. This dual-functional capability enables effective treatment of mixed pollutant system, exhibiting pseudo-first-order rate constants of 0.12001 min-1 for Cr(VI) and 0.17280 min-1 for TC, representing 9.2-fold and 11.3-fold enhancements over pristine SrTiO3, respectively. This work establishes a dual-engineering strategy integrating dopant-induced charge redistribution with oxygen vacancy optimization for advanced photocatalytic water purification.

Keywords

Tungsten-doped SrTiO3 / Charge redistribution / Band structure tuning / Chromium / Tetracycline

Cite this article

Download citation ▾
Bin Liu, Lin Cheng, Yi Zhang, Hong Du, Lingcong Li, Yuhan Li, Jianmin Luo. Tungsten-doped SrTiO3 for Boosting Photocatalytic Removal of Cr(VI) and Antibiotic Tetracycline: Charge Redistribution and Band Engineering. Chemical Research in Chinese Universities, 2025, 41(4): 880-892 DOI:10.1007/s40242-025-5116-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiS, CaiM, LiuY, WangC, LvK, ChenXChin. J. Catal., 2022, 432652

[2]

YuanG, LiK, ZhangJ, DongL, LiY, YangG, HuangL, LiF, ZhangH, ZhangSChem. Eng. J., 2024, 488150766

[3]

LiuB, ZhouN, LiuJ, WangX, RobertsonP K J, ChenX, ChenC, LuoJ, WangCJ. Rare Earth, 2024, 42917

[4]

BiH X, YinX Y, HeJ Y, SongH, LuS J, MaY Y, HanZ GRare Met., 2023, 423638

[5]

LuoJ, LiW, WangX, LichtfouseE, HuangD, ChenX, ZhangY, ZhuL, WangCJ. Rare Earth, 2024, 42827

[6]

RenZ, LiuX, ZhugeZ, GongY, SunC QChin. J. Catal., 2020, 41180

[7]

CaoD, GuanJ, DuJ C, SunQ, MaJ, LiJ G, LiuJ T, ShengG PJ. Hazard Mater., 2024, 47610

[8]

WanZ, MaoQ H, XiangJ J, MaD G, TangH QJ. Mater. Sci. Technol., 2023, 161233

[9]

XingX, ZhangL X, RenY, LiY F, YuH, ShiW WJ. Environ. Chem. Eng., 2024, 1215

[10]

LiX Q, FengS, YangJ, XieT P, WangJ K, ChenX J, KongD S, ChenH YRare Met., 2022, 42862

[11]

TangD L, ChenX Y, YanJ Y, XiongZ, LouX Y, YeC S, ChenJ, QiuTChin. J. Chem. Eng., 2023, 53222

[12]

YuanZ, ZouJ, ZhaoX, ShiJ Y, GuoC, YanMJ. Mater. Sci. Technol., 2023, 16686

[13]

WangH J, WanY, LiB R, YeJ, GanJ H, LiuJ J, LiuX, SongX H, ZhouW Q, LiX, HuoP WJ. Mater. Sci. Technol., 2024, 173137

[14]

FazaeliR, AliyanH, RichesonD, LiY NJ. Environ. Sci., 2025, 148437

[15]

ZhaoQ, GuoZ N, LiS Y, WangJ L, LiZ P, JiaZ F, WangK W, GuoYChin. J. Inorg. Chem., 2024, 40885

[16]

ZhengJ H, ZhaoZ X, LiangJ, LiangB, HuangH L, HuangG, JunaidM, WangJ, HuangKJ. Colloid Interface Sci., 2024, 667650

[17]

LanQ, JinS J, LiuY, JinX L, XieH Q, LiY Z, LiuK C, ChenLTungsten, 2025, 7243

[18]

XuJ J, GuH Y, ChenM D, LiX P, ZhaoH W, YangH BRare Met., 2022, 412417

[19]

LiS J, ShaoL H, YangZ F, ChengS, YangC, LiuY T, XiaX NGreen Energy Environ, 2022, 7246

[20]

Yang B., Dai J., Zhao Y., Wang Z., Wu J., Ji C., Zhang Y., Pu X., Biochar, 2023, 5, https://doi.org/10.1007/s42773-022-00197-4.

[21]

LiS J, CaiM J, LiuY P, WangC C, LvK L, ChenX BChin. J. Catal., 2022, 432652

[22]

LiuT, WangC, WangW, XuP, SunX, ZhangJCeram Int., 2021, 4717015

[23]

ZhaoD, CaiCInorg. Chem. Front, 2020, 72799

[24]

CaoS Q, LiL A, DongJ T, WangB, WeiH T, JiM X, LiuG P, XiaJ X, LiH MJ. Alloys Compd., 2025, 101010

[25]

SinJ C, LamS M, ZengH H, LinH, LiH X, HuangL L, LiawS J, MohamedA R, LimJ WColloids Surf. A: Physicochem Eng. Asp, 2024, 69213

[26]

CaiM, LiuY, DongK, ChenX, LiSChin. J. Catal., 2023, 52239

[27]

LiS, CaiM, LiuY, WangC, L, ChenXChin. J. Catal., 2022, 432652

[28]

LiS, CaiM, WangC, LiuY, LiN, ZhangP, LiXJ. Mater. Sci. Technol., 2022, 123177

[29]

WeiZ, YanJ, GuoW, ShangguanWChin. J. Catal., 2023, 48279

[30]

WangW, ChiW, ZouZ, ZhangP, WangK, ZouJ, PingH, XieJ, WangW, FuZJ. Mater. Sci. Technol., 2023, 136159

[31]

UmaP I, ShenoyU S, BhatD KACS Appl. Nano Mater., 2023, 616798

[32]

WangL, YangT, WeiM, GuanR, WeiW, JiangJJ. Mater. Sci. Technol., 2025, 217169

[33]

YanX, HeJJ. Phys. Chem. Lett., 2024, 1510749

[34]

WangY, LiuX, YuK, NingZ, SongQ, XieHJ. Mater. Chem. A, 2024, 126087

[35]

MohanN S, PandianM, VijayalakshmiV, ArulrajACeram Int., 2025, 51: 13803-13814

[36]

WanS J, HouY T, WangW, LuoG Q, WangC B, TuR, CaoS WRare Met., 2024, 435880

[37]

ChenX, ZhangL, LiuQ, LiB, WuS, TianSCeram Int., 2024, 5010232

[38]

DongL, QuJ, ZhangT, ZhuG, MaN, ZhaoC, YuanY, GuanX, GuoLChin. Chem. Lett., 2025, 36110397

[39]

IlyasovV V, PhamK D, ZhdanovaT P, PhucH V, HieuN N, NguyenC VPhysica B, 2017, 52628

[40]

DahlqvistM, RosenJNanoscale, 2020, 12785

[41]

LiJ, YanS, DuM, ZhangJ, WuN, LiuG, ChenH, YuanC, QinA, LiuXJ. Colloid Interface Sci., 2024, 662183

[42]

HeJ, YuJ S, HuangZ P, ZhuZ Y, WangM H, WangN N, ZhangJ J, ZhangP M, LiG, ZhuYChin. J. Anal. Chem., 2014, 421189

[43]

ZhouL, JiangM, SunY, YangD, XuJ, PengZ, WuD, WeiL, LiangP, ChaoX, YangZCeram Int., 2023, 4911705

[44]

ZhangQ Y, LuH S, ZhongH X, YanX D, OuyangC Y, ZhangL ZJ. Mater. Chem. A, 2015, 313706

[45]

HsiaoY S, Chang-JianC W, WengH C, ChiangH H, LuC Z, PangW K, PetersonV K, JiangX C, WuP I, ChengC P, HuangJ HAppl. Surf. Sci., 2022, 57311

[46]

SunY, SzulejkoJ E, KimK H, KumarV, LiXChin. J. Catal., 2023, 5520

[47]

CenturionH A, RabeloL G, Rodriguez-GutierrezI, FerrerM M, BettiniJ, WenderH, RossiL M, SouzaF L, GonçalvesRACS Appl. Energy Mater., 2022, 512727

[48]

PadminiE, RamachandranKSolid State Commun., 2019, 302113716

[49]

LiJ, NiZ, HeY, YangS, GaoQ, CaiX, FangY, QiuR, ZhangSSep. Purif Technol., 2023, 316123756

[50]

LiuY, YangZ, NgY H, ChenJ, LiJ, GanQ, LiuQ, YangX, FangY, ZhangSJ. Mater. Sci. Technol., 2025, 215147

[51]

ChengS, CenZ, TangC, XuL, YaoZ, ZhouX, LiuQ, ZhangSJ. Environ. Chem. Eng., 2025, 13117201

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

48

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/