Transition Metal Sulfide Cocatalysts: Applications and Challenges in Photocatalytic Hydrogen Production

Yu Zhou , Weikang Wang , Jinhe Li , Wei Ren , Lele Wang , Qinqin Liu

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (4) : 687 -703.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (4) : 687 -703. DOI: 10.1007/s40242-025-5103-z
Review
review-article

Transition Metal Sulfide Cocatalysts: Applications and Challenges in Photocatalytic Hydrogen Production

Author information +
History +
PDF

Abstract

Hydrogen (H2), as a pivotal zero-carbon energy carrier, plays a critical role in the global energy transition, with its efficient production being paramount. Photocatalytic water splitting, driven by solar energy to produce H2, is regarded as an ideal pathway for green hydrogen generation. However, its efficiency is still restricted by factors including narrow light-absorption spectra, elevated carrier recombination rates, and slow surface reaction kinetics. Among various strategies for enhancing photocatalytic activity, the development of cocatalyst loading has garnered significant attention due to its remarkable efficiency, stability, cost-effectiveness, and the ability to finely tune its performance. In the pursuit of optimizing catalysts for the green H2 production, researchers have delved into the design of cocatalysts by focusing on four pivotal aspects: band alignment and interfacial engineering, crystal phase modulation, precise regulation of active sites, and photothermal synergy effects. Transition metal sulfides (TMSs) have emerged as promising alternatives to noble metal cocatalysts, possessing unique electronic structures, tunable active sites, and interfacial synergistic effects. This review systematically summarizes recent advancements in TMS-based cocatalysts, including MoS2, NiS, WS2, and CuS, for photocatalytic H2 evolution. Furthermore, addressing practical challenges in TMS applications, we propose future research directions focusing on improving long-term material stability, developing environmentally friendly material designs, enabling low-cost, scalable synthesis, promoting interfacial charge transfer and advancing integrated device engineering. These efforts aim to provide theoretical foundations and technological breakthroughs for constructing efficient, economical, and sustainable solar-tohydrogen conversion systems.

Keywords

Cocatalyst / Photocatalysis / Hydrogen evolution reaction (HER) / Metal sulfide / Water-splitting

Cite this article

Download citation ▾
Yu Zhou, Weikang Wang, Jinhe Li, Wei Ren, Lele Wang, Qinqin Liu. Transition Metal Sulfide Cocatalysts: Applications and Challenges in Photocatalytic Hydrogen Production. Chemical Research in Chinese Universities, 2025, 41(4): 687-703 DOI:10.1007/s40242-025-5103-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiH, TaoS, WanS, QiuG, LongQ, YuJ, CaoSChin. J. Catal., 2023, 46167

[2]

DengZ, ZhuB, DavisS J, CiaisP, GuanD, GongP, LiuZNat. Rev. Earth Environ., 2025, 6231

[3]

ZhuangM, WangX, YangY, WuY, WangL, LuXNat. Food, 2025, 6513

[4]

JiQ, YuX, ChenL, YarleyO P N, ZhouCInd. Crops Prod., 2021, 172114064

[5]

FanG, ZhangH, SunB, PanFNat. Commun., 2025, 164284

[6]

WangX, JinZ, LiXRare Met., 2023, 421494

[7]

LiuY, GuoH, YuM, ShenC, XuAACS Sustainable Chem. Eng., 2022, 1016476

[8]

SuH, WangW, ShiR, TangH, SunL, WangL, LiuQ, ZhangTCarbon Energy, 2023, 5e280

[9]

FujishimaA, HondaKNature, 1972, 23837

[10]

XuY, HassanM M, AliS, LiH, OuyangQ, ChenQJ. Agric. Food Chem., 2021, 691667

[11]

XiaX, JiaY, WangW, ZhangJ, WangL, LiuQJ. Mater. Sci. Technol., 2025, 236301

[12]

LiZ, YanT, FangXNat. Rev. Mater., 2023, 8587

[13]

WangW, MeiS, JiangH, WangL, TangH, LiuQChin. J. Catal., 2023, 55137

[14]

WangW, WuY, ZhangJ, MengK, LiJ, WangL, LiuQActa Phys. Chim. Sin., 2025, 41100093

[15]

JingZ, DingJ, ZhangT, YangD, QiuF, ChenQ, XuJFood Bioprod. Process., 2019, 115134

[16]

MaG, ShiQ, HouX, PengY, LiuQFront. Sustain. Food S., 2024, 81448421

[17]

YeB, TangH, LiuQ, WangW, WangL, HuJCarbon, 2023, 204465

[18]

RahmanM Z, EdvinssonT, GasconJNat. Rev. Chem., 2022, 6243

[19]

ChengG, LiuX, SongX, ChenX, DaiW, YuanR, FuXAppl. Catal., dB, 2020, 277119196

[20]

YangW, GaoM, ZhangY, DaiY, PengW, JiS, JiY, HuangW, XuWJ. Food Compos. Anal., 2024, 136106738

[21]

LiangN, ShiB, HuX, LiW, HuangX, LiZ, ZhangX, ZouX, ShiJFood Chem., 2024, 460140570

[22]

YuZ, GuanC, YueX, XiangQChin. J. Catal., 2023, 50361

[23]

YuZ, LiF, XiangQJ. Mater. Sci. Technol., 2024, 175244

[24]

ChangJ, SuK, PaoC, TsaiJ J, SuC, ChenJ, LyuL M, KuoC, SuA, YangH, LaiY, JengU SACS Nano, 2024, 181611

[25]

WangW, ShanW, HuY, JiangH, WangL, ChenJ, LiuQ, TangHChem. Eng. J., 2024, 493152516

[26]

SunY, XiongR, KeX, LiaoJ, XiaoY, ChengB, LeiSSep. Purif. Technol., 2024, 345127253

[27]

LiuZ, WangL, LiuP, ZhaoK, YeS, LiangGFood Chem., 2021, 357129753

[28]

MaS, PanL, YouT, WangKJ. Agric. Food Chem., 2021, 694874

[29]

WangM, WangP, WangX, ChenF, YuHJ. Mater. Sci. Technol., 2024, 174168

[30]

WangW, LiuR, ZhangJ, KongT, WangL, YuX, JiX, LiuQ, LongR, LuZ, XiongYAngew. Chem., Int. Ed., 2024, 64e202415800

[31]

LiuH, WuC, LvK, TangD, LiQJ. Mater. Sci. Technol., 2024, 188144

[32]

LuE, TaoJ, YangC, HouY, ZhangJ, WangX, FuXActa Phys. Chim. Sin., 2023, 392211029

[33]

WeiH, MengF, ZhangH, YuW, LiJ, YaoSJ. Mater. Sci. Technol., 2024, 185107

[34]

YangX, WangT, MaH, ShiW, XiaZ, YangQ, ZhangP, MaR, XieG, ChenSJ. Mater. Sci. Technol., 2024, 182210

[35]

LiuX, CaoQ, LiG, LiuH, ZengL, ZhaoL, ChangB, WangX, LiuH, ZhouWRare Met., 2024, 432015

[36]

YangJ, XuT, LvP, SuY, XieJ, LiZ, ZhouHRare Met., 2024, 44358

[37]

WuC, LvK, LiX, LiQChin. J. Catal., 2023, 54137

[38]

AzizarG A B, HongJ WJ. Mater. Sci. Technol., 2024, 168103

[39]

SunL, YuX, TangL, WangW, LiuQChin. J. Catal., 2023, 52164

[40]

WenH, LiR, RenJ, SoomroR A, FuS, GuoL, FuF, XuB, YangC, WangDSci. China Chem., 2024, 682712

[41]

LiuC, ZhangY, WuJ, DaiH, MaC, ZhangQ, ZouZJ. Mater. Sci. Technol., 2022, 11481

[42]

DuX, DuW, SunJ, JiangDFood Chem., 2022, 385132731

[43]

SunL, WangW, LuP, LiuQ, WangL, TangHChin. J. Catal., 2023, 5190

[44]

HuJ, LaoH, XuX, WangW, WangL, LiuQRare Met., 2024, 432682

[45]

TangY, MakC H, LiuR, WangZ, JiL, SongH, TanC, BarrièreF, HsuH YAdv. Funct. Mater., 2020, 302070343

[46]

WangQ, CaoX, LiuT, WuK, DengJ, ChenJ, CaiY, ShenM, YuC, WangWRare Met., 2023, 42484

[47]

WangW, WangL, SunL, JiangH, LiuY, LiuQ, SheX, TangHChem. Eng. J., 2023, 477146945

[48]

ZhangH, YaoX, ShanW, LiuY, TangHSci. China Mater., 2024, 67532

[49]

MaC, ChengM, LiuQ, YuanY, ZhangF, LiN, GuanJ, ShenZ, YuZ, ZouZNano Lett., 2024, 24331

[50]

RenM, KongF, ZhouC, FakayodeO A, LiangJ, LiH, ZhouM, FanXInd. Crops Prod., 2023, 203117193

[51]

ZhangT, YuanD, GuoQ, QiuF, YangD, OuZFood Bioprod. Process., 2019, 114154

[52]

ShaoW, ZhangY, ZhouZ, LiN, JiaoF, LingY, LiY, ZhouZ, CaoY, LiuZ, PanX, FuQ, WöllC, LiuP, BaoX, YangFNat. Commun., 2024, 159620

[53]

NúñezM, LansfordJ L, VlachosD GNat. Chem., 2019, 11449

[54]

FuH, TianJ, ZhangQ, ZhengZ, ChengH, LiuY, HuangB, WangPChin. J. Catal., 2024, 64143

[55]

YeS, LiJ, FengY, GaoS, CaoRSci. China Mater., 2023, 663146

[56]

WuS, HwangI, OsuagwuB, WillJ, WuZ, SarmaB B, PuF, WangL, BaduraZ, ZoppellaroG, SpieckerE, SchmukiPACS Catal., 2023, 1333

[57]

ShanP, GengK, GuoL, KuangL, ShenY, XiongB, HouJ, GuoF, WangG, ShiWChem. Eng. J., 2025, 513162801

[58]

JinM, YangX, WangX, ZhangZJ. Colloid Interface Sci., 2025, 680235

[59]

PengJ, ShenJ, YuX, TangH, ZulfiqarL QChin. J. Catal., 2021, 4287

[60]

DongK, ShenC, YanR, LiuY, ZhuangC, LiSActa Phys. Chim. Sin., 2024, 402310013

[61]

ZhangB, CaoX, SuoC, CuiJ, DuanX, GuoS, ZhangXSci. China Mater., 2024, 673151

[62]

LiangZ, YangS, WangX, CuiH, WangX, TianJAppl. Catal., B, 2020, 274119114

[63]

HuJ, XiaK, YangA, ZhangZ, XiaoW, LiuC, ZhangQActa Phys. Chim. Sin., 2024, 402305043

[64]

JamalF, RafiqueA, MoeenS, HaiderJ, NabganW, HaiderA, ImranM, NazirG, AlhassanM, IkramM, KhanQ, AliG, KhanM, AhmadW, MaqboolMACS Appl. Nano Mater., 2023, 67077

[65]

ZhangY, ZhangZJ. Mater. Sci. Technol., 2024, 171147

[66]

FungC M, ErC C, TanL L, MohamedA R, ChaiS PChem. Rev., 2022, 1223879

[67]

HeJ, ChenL, XieX, QinZ, JiH, SuTActa Phys. Chim. Sin., 2024, 402404030

[68]

HeK, CampbellE, HuangZ, ShenR, LiQ, ZhangS, ZhongY L, ZhangP, LiXSmall Struct., 2022, 32200104

[69]

FardN E, RaeisiI, YousefipourZ, MosavinRACS Appl. Nano Mater., 2024, 75698

[70]

DasS, SwainG, ParidaKMater. Chem. Front., 2021, 52143

[71]

ShiZ, ZhangX, LinX, LiuG, LingC, XiS, ChenB, GeY, TanC, LaiZ, HuangZ, RuanX, ZhaiL, LiL, LiZ, WangX, NamG H, LiuJ, HeQ, GuanZ, WangJ, LeeC S, KucernakA R J, ZhangHNature, 2023, 621300

[72]

XuZ, LiuH, YangJ, GongX, ChenY, MengY, PengQ, DingJ, QuY, ZengQ, QiX, YangYAdv. Mater., 2025, 372501091

[73]

ZhengH, WangQ, WangZ, MaW, LongG, ChangB, LiaoS, LiCACS Energy Let., 2025, 10678

[74]

ZhangC, AiZ, XuX, HuangM, XiuZ, WuY, ShaoY, HaoXSmall, 20252411128

[75]

TangJ, ChenY, WangZ, HuY, WangJ, BaoL, ZhaoZ, YuanYACS Catal., 2025, 15265

[76]

ZengG, MiaoH, WuJ, ZhuX, YiJ, ZhuX, QiH, JiangZ, MoZ, LiuJ, XuHChem. Eng. J., 2024, 499156367

[77]

ZhaoW, YanA, SuZ, HuangF, WangQ, LiS, LuS, WangC, ZhangT, ZhangJ, GaoY, YuanHSmall Struct., 2024, 52300569

[78]

PanJ, ZhangA, ZhangL, DongPChin. J. Catal., 2024, 58180

[79]

NingY, WangS, WangH, QuanW, LvD, YuS, HuX, TianHJ. Colloid Interface Sci., 2024, 662928

[80]

LiuQ, YouJ, XiongY, LiuW, SongM, RenJ, XueQ, TianJ, ZhangH, WangXJ. Colloid Interface Sci., 2024, 675772

[81]

MahalingamS, GnanaraniS V, JayashreeC, GaneshrajaA S, PugazhenthiranN, RahamanM, AbinayaS, SenthilB, KimJChemosphere, 2024, 357142033

[82]

LuP, ZhaoH, LiZ, ChuM, XieG, XieT, JiangLInt. J. Hydrogen Energy, 2024, 82776

[83]

LiN, MaJ, WangW, ChangQ, LiuL, HaoC, ZhangH, ZhangH, HuS, WangSJ. Colloid Interface Sci., 2024, 676496

[84]

SehrawatP, RajA, SinghS, MehtaS K, BhinderS S, KansalS KInt. J. Hydrogen Energy, 2024, 6217

[85]

GaoD, DengP, ZhangJ, ZhangL, WangX, YuH, YuJAngew. Chem. Int. Ed., 2023, 62e202304559

[86]

XuJ, ZhongW, ZhangX, WangX, HongX, YuHSmall, 2023, 192303960

[87]

WangY, YangC, GuoL, YangZ, JinB, DuR, FuF, WangDJ. Colloid Interface Sci., 2023, 630341

[88]

PengY, GuoX, XuS, GuoY, ZhangD, WangM, WeiG, YangX, LiZ, ZhangY, TianFJ. Energy Chem., 2022, 75276

[89]

ZhangH, ShaoC, WangZ, ZhangJ, DaiKJ. Mater. Sci. Technol., 2024, 195146

[90]

DingX, LiuD, ZhaoP, ChenX, WangH, OropezaF E, GorniG, BarawiM, GarcíaT M, De La Peña O’sheaV A, HofmannJ P, LiJ, KimJ, ChoS, WuR, ZhangK H LNat. Commun., 2024, 155336

[91]

GaoY, SunF, FangY, WenY, HongF, ShanBJ. Am. Chem. Soc., 2025, 1477671

[92]

LiX, ZhangS, LiX, FanW, HuangYEnergy Fuels, 2025, 397039

[93]

XuD, KeJ, YanZ, HuY, LiuJAppl. Catal., B, 2025, 362124746

[94]

GaoD, ZhangX, WangP, YuJ, YuHAdv. Funct. Mater., 2025, 352424527

[95]

SongL, ZhangT, ZhangX, TianJ, WangJ, YangJ, WangW, LinK, FengD, MaBAppl. Catal., B, 2024, 359124458

[96]

HuangZ, GuoC, ZhengQ, LuH, MaP, FangZ, SunP, YiX, ChenZChin. Chem. Lett., 2024, 35109580

[97]

ZhouT, HanX, ShenW, JiF, LiuM, SongY, HeWChin. Chem. Lett., 2024, 35110415

[98]

YinZ, ChenH, WangQ, WangZ, YuG, TangB, ZhangM, LiK, ZhangZ, LuoQ, HuT, LvBJ. Colloid Interface Sci., 2024, 675218

[99]

SongT, WangJ, SuL, ZhaoH, LiuY, TuWInt. J. Hydrogen Energy, 2024, 79876

[100]

LeiZ, CaoX, FanJ, HuX, HuJ, LiN, SunT, LiuEChem. Eng. J., 2023, 457141249

[101]

ZhangH, GuH, WangX, ChangS, LiQ, DaiWChem. Eng. J., 2023, 457141185

[102]

ZengR, ChengC, XingF, ZouY, DingK, HuangCAppl. Catal., B, 2022, 316121680

[103]

GaoD, XuJ, WangL, ZhuB, YuH, YuJAdv. Mater., 2022, 342108475

[104]

FanX, WangB, HengQ, ChenW, MaoLInt. J. Hydrogen Energy, 2022, 4732531

[105]

WuQ, LuD, KondamareddyK K, HoW, WangQ, ZhangY, ZengY, ZhangB, XieL, ZhaoB, WangZ, HaoH, FanH, WangHInt. J. Hydrogen Energy, 2022, 4714063

[106]

HeB, BieC, FeiX, ChengB, YuJ, HoW, Al-GhamdiA A, WagehSAppl. Catal., B, 2021, 288119994

[107]

ZhongW, WuX, LiuY, WangX, FanJ, YuHAppl. Catal., B, 2021, 280119455

[108]

VarmaP, ReddyD AEnergy Fuels, 2024, 3813315

[109]

GengM, WangX, YuanS, ZhaoT, ZhangJ, WangL, LiuZ, SunM, YinGEnergy Fuels, 2024, 388124

[110]

VarmaP, ReddyD AACS Appl. Energy Mater., 2024, 74581

[111]

SeoD B, KwonY M, KimJ, KangS, YimS, LeeS, KimE, SongW, AnKACS Appl. Mater. Interfaces, 2024, 1628613

[112]

LiJ, CaoW, LiY, XuX, JiangY, LinKACS Appl. Energy Mater., 2022, 59463

[113]

TangY, ZhouW, ShangQ, GuoY, HuH, LiZ, ZhangY, LiuL, WangH, TanX, YuT, YeJAppl. Catal., B, 2022, 310121295

[114]

LiuJ, LiuH, PengW, LiY, ZhangF, FanXChem. Eng. J., 2022, 431133286

[115]

HuM, ZhuJ, GuoW, XuQ, MinY, FanJACS Sustainable Chem. Eng., 2022, 101008

[116]

LiangK, YinM, MaD, FanY, LiZInt. J. Hydrogen Energy, 2022, 4738622

[117]

LiZ, ZhouW, TangY, TanX, ZhangY, GengZ, GuoY, LiuL, YuT, YeJChemSusChem, 2021, 144752

[118]

ArchanaB, KottamN, NayakS, ChandrasekharK B, SreedharaM BJ. Phys. Chem. C, 2020, 12414485

[119]

MengC, HuangM, LiYChem. Res. Chinese Universities, 2023, 39697

[120]

HongY, ZhangJ, HuangF, ZhangJ, WangX, WuZ, LinZ, YuJJ. Mater. Chem. A, 2015, 313913

[121]

YuZ, LuanX, XiaoH, YangY, LuoD, ZiJ, LianZAppl. Catal., B, 2024, 347123702

[122]

LiuJ, SunX, FanY, YuY, LiQ, ZhouJ, GuH, ShiK, JiangBSmall, 2024, 202306344

[123]

LianZ, WuF, ZiJ, LiG, WangW, LiHJ. Am. Chem. Soc., 2023, 14515482

[124]

DuX, HuJ, SunQ, FuH, ZhangJ, ChangJ, GaoH, LiaoYInt. J. Hydrogen Energy, 2024, 51936

[125]

ZhuX, PanZ, LuWInt. J. Hydrogen Energy, 2023, 4826740

[126]

XuY, ZhouZ, YuP, WangYChem. Eng. J., 2023, 470144275

[127]

FanH, SunS, BaJ, ChengH, XuC, WangY, LiJ, FangH, LiM, FanDInt. J. Hydrogen Energy, 2023, 4829593

[128]

MandariK K, SonN, KangMJ. Colloid Interface Sci., 2022, 615740

[129]

XueF, WuH, LiuY, MinM, HatamiM, LiN, LiuMInt. J. Hydrogen Energy, 2023, 486346

[130]

ZhaoB, LongX, ZhaoQ, ShakouriM, FengR, LinL, ZengY, ZhangY, FuX, LuoJMater. Today Nano, 2023, 23100362

[131]

GuoY, LiangZ, XueY, WangX, ZhangX, TianJJ. Colloid Interface Sci., 2022, 608158

[132]

YuB, MengF, ZhouT, FanA, KhanM W, WuH, LiuXCeram. Int., 2021, 478849

[133]

BhavaniP, PraveenK D, PuttaR A, HongY, GopannagariM, AmaranathaR D, KyuK TChemCatChem, 2021, 13304

[134]

ZhouD, WangG, FengY, ChenW, ChenJ, YuZ, ZhangY, WangJ, TangLDalton Trans., 2021, 507768

[135]

YendrapatiT, GautamA, BojjaS, PalUSol. Energy, 2020, 196540

[136]

ZhangQ, ZhangJ, ZhangL, YangF, LiL, DaiWCatal. Sci. Technol., 2020, 101030

[137]

LiW, LiJ, LiuZ, MaH, FangP, XiongR, WeiJRare Met., 2023, 43533

[138]

ZhangJ, ZhaoY, QiK, LiuSJ. Mater. Sci. Technol., 2024, 172145

[139]

ZhaoL, WeiL, HeH, ZhangX, LiuS, WangJInt. J. Hydrogen Energy, 2024, 62119

[140]

SunM, YeQ, LinL, WangY, ZhengZ, ChenF, ChengYJ. Colloid Interface Sci., 2023, 637262

[141]

YangJ, LinS, LiC, RenK, YeQ, DouWEnergy Fuels, 2024, 389034

[142]

SharmaS, DuttaV, RaizadaP, HosseiniB A, SinghP, NguyenV HEnviron. Chem. Lett., 2021, 19271

[143]

LiY, XuY, WangC, WangR, ZangSChin. Chem. Lett., 2025111256

[144]

SelvarajH, ChandrasekaranK, MuruganR, SundaramMSep. Purif. Technol., 2017, 180133

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/