PDF
Abstract
Cell membranes exhibit complex phase behaviors governed by intricate lipid-lipid interactions, which play pivotal roles in cellular processes, such as signaling and membrane trafficking. However, the molecular mechanisms underlying these phenomena, particularly their associations of lipid structural modifications (e.g., peroxidation) and membrane architecture (monolayer vs. bilayer), remain poorly understood. Here, we employ coarse-grained molecular dynamics simulations to systematically investigate the influence of membrane and lipid structure on phase separation. Our simulations found that monolayers exhibit stronger phase separation and higher lipid ordering than bilayers, underscoring the regulatory role of trans-bilayer coupling. Furthermore, we also found that even minor lipid structural modifications induced by peroxidation is able to enhance phase separation through three distinct mechanisms: increased lipid area, reduced diffusion coefficients, and altered cholesterol orientation. These findings provide molecular-level insights into the interplay between membrane architecture, lipid structure, and phase behavior, with potential implications for biomedical applications.
Keywords
Molecular dynamics simulation
/
Lipid
/
Cell membrane
/
Phase separation
Cite this article
Download citation ▾
Jingjing Niu, Xuewei Dong, Wenyan Pan, Bing Yuan, Kai Yang.
Molecular Insights into the Membrane Phase Separation Influenced by Membrane/Lipid Structural Changes.
Chemical Research in Chinese Universities 1-7 DOI:10.1007/s40242-025-5083-z
| [1] |
MouritsenO G Life—As Matter Fat, 2005 Switzerland Springer International Publishing
|
| [2] |
HitaishiP, MandalP, GhoshS K ACS Omega, 2021, 6: 34546
|
| [3] |
van MeerG, VoelkerD R, FeigensonG W Nat. Rev. Mol. Cell Biol., 2008, 9: 112
|
| [4] |
EdidinM Annu. Rev. Biophys. Biomol. Struct., 2003, 32: 257
|
| [5] |
SimonsK, IkonenE Nature, 1997, 387: 569
|
| [6] |
SigismundS, ConfalonieriS, CilibertoA, PoloS, ScitaG, Di FioreP P Physiol. Rev., 2012, 92: 273
|
| [7] |
WeiY, XuF, XuR, LiX, YanY, LongR, LiN, YuanB Chem. Res. Chinese Universities, 2025, 42: 643
|
| [8] |
JacobsonK, MouritsenO G, AndersonR G Nat. Cell Biol., 2007, 9: 7
|
| [9] |
SamsonovA V, MihalyovI, CohenF S Biophys. J., 2001, 81: 1486
|
| [10] |
LingwoodD, SimonsK Science, 2010, 327: 46
|
| [11] |
BalakrishnanM, KenworthyA K J. Am. Chem. Soc., 2024, 146: 1374
|
| [12] |
BorstJ W, VisserN V, KouptsovaO, VisserA J Biochim. Biophys. Acta, 2000, 1487: 61
|
| [13] |
AgmonE, SolonJ, BassereauP, StockwellB R Sci. Rep., 2018, 8: 5155
|
| [14] |
GęgotekA, SkrzydlewskaE Chem. Phys. Lipids, 2019, 221: 46
|
| [15] |
KinnunenP K, KaarnirantaK, MahalkaA K Biochim. Biophys. Acta, 2012, 1818: 2446
|
| [16] |
YeL F, ChaudharyK R, ZandkarimiF, HarkenA D, KinslowC J, UpadhyayulaP S, DovasA, HigginsD M, TanH, ZhangY, BuonannoM, WangT J C, HeiT K, BruceJ N, CanollP D, ChengS K, StockwellB R ACS Chem. Biol., 2020, 15: 469
|
| [17] |
BarayeuU, SchillingD, EidM, Xavier da SilvaT N, SchlickerL, MitreskaN, ZappC, GräterF, MillerA K, KapplR, SchulzeA, Friedmann AngeliJ P, DickT P Nat. Chem. Biol., 2023, 19: 28
|
| [18] |
von KrusenstiernA N, RobsonR N, QianN, QiuB, HuF, ReznikE, SmithN, ZandkarimiF, EstesV M, DupontM, HirschhornT, ShchepinovM S, MinW, WoerpelK A, StockwellB R Nat. Chem. Biol., 2023, 19: 719
|
| [19] |
SingerS J, NicolsonG L Science, 1972, 175: 720
|
| [20] |
MayS Soft Matter, 2009, 5: 3148
|
| [21] |
WagnerA J, LoewS, MayS Biophys. J., 2007, 93: 4268
|
| [22] |
AllenderD W, SchickM Biophys. J., 2006, 91: 2928
|
| [23] |
ZadoorianA, DuX, YangH Nat. Rev. Endocrinol., 2023, 19: 443
|
| [24] |
KrahmerN, FareseR V Jr, WaltherT C EMBO Mol. Med., 2013, 5: 973
|
| [25] |
OlzmannJ A, CarvalhoP Nat. Rev. Mol. Cell Biol., 2019, 20: 137
|
| [26] |
SongJ, MizrakA, LeeC-W, CicconetM, LaiZ W, TangW-C, LuC-H, MohrS E, FareseR V, WaltherT C Nat. Cell Biol., 2022, 24: 1364
|
| [27] |
PrévostC, SharpM E, KoryN, LinQ, VothG A, FareseR V, WaltherT C Dev. Cell, 2018, 44: 73
|
| [28] |
DhimanR, CaesarS, ThiamA R, SchrulB Semin. Cell Dev. Biol., 2020, 108: 4
|
| [29] |
TuW, DongX, OuL, ZhangX, YuanB, YangK Chem. Res. Chinese Universities, 2023, 39: 829
|
| [30] |
XuC, MaW, WangK, HeK, ChenZ, LiuJ, YangK, YuanB J. Phys. Chem. Lett., 2020, 11: 4834
|
| [31] |
DengZ, YouX, LinZ, DongX, YuanB, YangK J. Phys. Chem. Lett., 2023, 14: 6422
|
| [32] |
MaW, JiangX, DouY, ZhangZ, LiJ, YuanB, YangK J. Phys. Chem. Lett., 2021, 12: 11629
|
| [33] |
OuL, ChenH, YuanB, YangK ACS Nano, 2022, 16: 18090
|
| [34] |
ZhaoJ, WuJ, HeberleF A, MillsT T, KlawitterP, HuangG, CostanzaG, FeigensonG W Biochim. Biophys. Acta, 2007, 1768: 2764
|
| [35] |
BaoukinaS, Mendez-VilluendasE, TielemanD P J. Am. Chem. Soc., 2012, 134: 17543
|
| [36] |
RisseladaH J, MarrinkS J Proc. Natl. Acad. Sci. USA, 2008, 105: 17367
|
| [37] |
WeinerM D, FeigensonG W J. Phys. Chem. B, 2018, 122: 8193
|
| [38] |
JoS, KimT, IyerV G, ImW J. Comput. Chem., 2008, 29: 1859
|
| [39] |
QiY, IngólfssonH I, ChengX, LeeJ, MarrinkS J, ImW J. Chem. Theory Comput., 2015, 11: 4486
|
| [40] |
de JongD H, SinghG, BennettW F D, ArnarezC, WassenaarT A, SchäferL V, PerioleX, TielemanD P, MarrinkS J J. Chem. Theory Comput., 2013, 9: 687
|
| [41] |
LuoZ, BaiX, YueT, HuG Nano Today, 2022, 45: 101525
|
| [42] |
GuoY, BaulinV A, ThalmannF Soft Matter, 2016, 12: 263
|
| [43] |
MarrinkS J, de VriesA H, MarkA E J. Phys. Chem. B, 2004, 108: 750
|
| [44] |
WeberG, CharitatT, BaptistaM S, UchoaA F, PavaniC, JunqueiraH C, GuoY, BaulinV A, ItriR, MarquesC M, SchroderA P Soft Matter, 2014, 10: 4241
|
| [45] |
AokiP H, SchroderA P, ConstantinoC J, MarquesC M Soft Matter, 2015, 11: 5995
|
| [46] |
Van Der SpoelD, LindahlE, HessB, GroenhofG, MarkA E, BerendsenH J J. Comput. Chem., 2005, 26: 1701
|
| [47] |
AbrahamM J, MurtolaT, SchulzR, PállS, SmithJ C, HessB, LindahlE Software X, 2015, 1/2: 19
|
| [48] |
HumphreyW, DalkeA, SchultenK J. Mol. Graph., 1996, 14: 33
|
| [49] |
McGibbonR T, BeauchampK A, HarriganM P, KleinC, SwailsJ M, HernándezC X, SchwantesC R, WangL-P, LaneT J, PandeV S Biophys. J., 2015, 109: 1528
|
| [50] |
KonstantinovskyD, YanE C Y, Hammes-SchifferS J. Phys. Chem. Lett., 2023, 14: 5260
|
| [51] |
SimonsK, IkonenE Science, 2000, 290: 1721
|
| [52] |
PöhnlM, TrollmannM F W, BöckmannR A Nat. Commun., 2023, 14: 8038
|
| [53] |
HungW C, LeeM T, ChenF Y, HuangH W Biophys. J., 2007, 92: 3960
|
| [54] |
DrewB W F, Joan-EmmaS, PeterT D Biophys. J., 2018, 114: 2595
|
RIGHTS & PERMISSIONS
Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH
Just Accepted
This article has successfully passed peer review and final editorial review, and will soon enter typesetting, proofreading and other publishing processes. The currently displayed version is the accepted final manuscript. The officially published version will be updated with format, DOI and citation information upon launch. We recommend that you pay attention to subsequent journal notifications and preferentially cite the officially published version. Thank you for your support and cooperation.