BiOBr/Cd0.805Zn0.195S Nanocomposite with S-scheme Heterojunction for Efficient and Stable Photocatalytic Hydrogen Evolution Without Co-catalysts

Aoyun Meng , Juan Li , Qianqian Cao , Zhenhua Li , Wen Li , Zhen Li , Jinfeng Zhang , Junwei Fu

Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (4) : 790 -798.

PDF
Chemical Research in Chinese Universities ›› 2025, Vol. 41 ›› Issue (4) : 790 -798. DOI: 10.1007/s40242-025-5081-1
Article
research-article

BiOBr/Cd0.805Zn0.195S Nanocomposite with S-scheme Heterojunction for Efficient and Stable Photocatalytic Hydrogen Evolution Without Co-catalysts

Author information +
History +
PDF

Abstract

Due to the issue of energy depletion, photocatalytic hydrogen evolution has gained significant attention in recent years as a sustainable energy conversion technology. However, traditional single photocatalytic materials often face problems of low catalytic activity and stability. To address this challenge, this study proposes novel BiOBr/Cd0.805Zn0.195S (BO/CZS) nanocomposite materials, which effectively enhance photocatalytic hydrogen evolution efficiency through an S-scheme heterojunction design. Under visible light without the use of a co-catalyst, pure BO shows almost no photocatalytic hydrogen evolution activity, while CZS exhibits a hydrogen evolution rate of 4.0 mmol·g‒1·h‒1. The hydrogen evolution rate of the 2% BO loading composite material (2-BO/CZS) significantly increases to 5.9 mmol·g‒1·h‒1. Stability tests show that the 2-BO/CZS composite material retains 97% of its initial activity after four cycles. X-Ray photoelectron spectroscopy (XPS) analysis and differential charge density analysis confirm that the heterojunction mechanism of this composite material follows the S-scheme charge transfer mechanism, which effectively promotes the separation and migration of photogenerated charge carriers, reduces charge recombination, and significantly improves catalytic efficiency. This system demonstrates outstanding stability and efficiency in hydrogen evolution, making it a promising candidate material for sustainable hydrogen production applications.

Keywords

Photocatalytic / Hydrogen / Nanocomposite / S-scheme

Cite this article

Download citation ▾
Aoyun Meng, Juan Li, Qianqian Cao, Zhenhua Li, Wen Li, Zhen Li, Jinfeng Zhang, Junwei Fu. BiOBr/Cd0.805Zn0.195S Nanocomposite with S-scheme Heterojunction for Efficient and Stable Photocatalytic Hydrogen Evolution Without Co-catalysts. Chemical Research in Chinese Universities, 2025, 41(4): 790-798 DOI:10.1007/s40242-025-5081-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

JiangZ, ZhangL, YuJJ. Chin. Ceram. Soc., 2023, 5173

[2]

WangL, SunJ, ChengB, HeR, YuJJ. Phys. Chem. Lett., 2023, 144803

[3]

WangW, ChengB, LuoG, YuJ, CaoSMater. Today, 2024, 81137

[4]

ZhuB, SunJ, ZhaoY, ZhangL, YuJAdv. Mater., 2024, 362310600

[5]

ChenL, RenJ, YuanZAdv. Energy Mater., 2023, 132203720

[6]

DengA, SunY, GaoZ, YangS, LiuY, HeH, ZhangJ, LiuS, SunH, WangSNano Energy, 2023, 108108228

[7]

EghbaliP, HassaniA, WaclawekS, LinK Y, SayyarZ, GhanbariFChem. Eng. J., 2024, 480147920

[8]

EidK, GamalA, AbdullahA MGreen Chem., 2023, 251276

[9]

Habibi-YangjehA, PournematiKCrit. Rev. Environ. Sci. Technol., 2024, 54290

[10]

HaoP, ChenZ, YanY, ShiW, GuoFSep. Purif. Technol., 2024, 330125302

[11]

Hemmati-EslamluP, Habibi-YangjehAFlatchem, 2024, 43100597

[12]

JiangZ, ChengB, ZhangL, ZhangZ, BieCChin. J. Catal., 2023, 5232

[13]

LiF, ZhuG, JiangJ, YangL, DengF, ArramelL XJ. Mater. Sci. Technol., 2024, 177142

[14]

LiT, TsubakiN, JinZJ. Mater. Sci. Technol., 2024, 16982

[15]

LuJ, GuS, LiH, WangY, GuoM, ZhouGJ. Mater. Sci. Technol., 2023, 160214

[16]

MalefaneM E, MafaP J, ManagaM, NkambuleT T I, KuvaregaA TJ. Phys. Chem. Lett., 2023, 141029

[17]

MohsinM, IshaqT, BhattiI A, MaryamJ A, MelaibariA A, Abu-HamdehN HNanomaterials, 2023, 13546

[18]

MolaeiM JInt. J. Hydrogen Energy, 2023, 4832708

[19]

NagellaS R, VijithaR, NaiduB R, RaoK S V K, HaC S, VenkateswarluKNano Energy, 2023, 111108402

[20]

NieC, WangX, LuP, ZhuY, LiX, TangHJ. Mater. Sci. Technol., 2024, 169182

[21]

RenY, LiY, PanG, WangN, XingY, ZhangZJ. Mater. Sci. Technol., 2024, 171162

[22]

SharmaK, HasijaV, MalhotraM, VermaP K, LeQ V, QuangH, NguyenV, SinghP, RaizadaPInt. J. Hydrogen Energy, 2024, 52804

[23]

WangG, LvS, ShenY, LiW, LinL, LiZJ Materiomics., 2024, 10315

[24]

WangJ, WangZ, DaiK, ZhangJJ. Mater. Sci. Technol., 2023, 165187

[25]

WangS, ZhangX, TangY, HaoS, ZhengS, QiaoJ, WangZ, WuL, LiuJ, WangFCarbon, 2024, 216118528

[26]

WangW, MeiS, JiangH, WangL, TangH, LiuQChin. J. Catal., 2023, 55137

[27]

WangZ, WangJ, ZhangJ, DaiKActa Physico-Chim. Sin., 2023, 392209037

[28]

WangZ, YueX, XiangQCoord. Chem. Rev., 2024, 504215674

[29]

WuX, ChenG, LiL, WangJ, WangGJ. Mater. Sci. Technol., 2023, 167184

[30]

WuX, ChenG, WangJ, LiJ, WangGActa Physico-Chim. Sin., 2023, 392212016

[31]

WuX, TanL, ChenG, KangJ, WangGSci. China Mater., 2024, 67444

[32]

XuF, WengBJ. Mater. Chem. A, 2023, 114473

[33]

YinK, YanZ, FangN, YuW, ChuY, ShuS, XuMSep. Purif. Technol., 2023, 325124636

[34]

ZhangH, WangZ, ZhangJ, DaiKChin. J. Catal., 2023, 4942

[35]

ZhangK, LiY, YuanS, ZhangL, WangQActa Physico-Chim. Sin., 2023, 392212010

[36]

ZhangX, YangPChemnanomat, 2023, 9e202300041

[37]

MengA, YangR, LiW, LiZ, ZhangJJ. Materiomics, 2025, 11100919

[38]

LiZ, LiuW, ChenC, MaT, ZhangJ, WangZActa Physico-Chim. Sin., 2023, 392208030

[39]

LiW, MengA, LiC, SunY, ZhangJ, LiZJ. Colloid Interface Sci., 2025, 677704

[40]

LiS, DongK, CaiM, LiX, ChenXeScience, 2024, 4100208

[41]

LiZ, MengA, SangX, LiW, ZhangJ, WangZInt. J. Hydrogen Energy, 2024, 51777

[42]

WangX Q, ChenQ, ZhouY J, TanY, WangY, LiH M, ChenY, SayedM, GeioushyR A, AllamN K, FuJ W, SunY F, LiuMNano Res., 2024, 171101

[43]

ZhangX D, LiuK, FuJ W, LiH M, PanH, HuJ H, LiuMFront. Phys., 2021, 1663500

[44]

LvJ L, LiuJ, ZhangJ F, DaiK, LiangC H, WangZ L, ZhuG PJ. Colloid Interf. Sci., 2018, 51277

[45]

ZhuB C, JiangC J, XuJ S, ZhangZ Y, FuJ W, YuJ GMater. Today, 2025, 82251

[46]

TanY, WangX Q, LiaoX Q, ChenQ, LiH M, LiuK, FuJ W, LiuMNano Lett., 2024, 2412163

[47]

ChenQ, WangX Q, ZhouY J, TanY, LiH M, FuJ W, LiuMAdv. Mater., 2024, 362303902

[48]

ChenD D, WangZ L, FuJ W, ZhangJ F, DaiKSci. China Mater., 2024, 67541

[49]

ZhouY J, NiG H, WuK Z, ChenQ, WangX Q, ZhuW W, HeZ, LiH M, FuJ W, LiuMAdv. Sustain. Syst., 2023, 72200374

[50]

ZhouY J, LiangY Q, FuJ W, LiuK, ChenQ, WangX Q, LiH M, ZhuL, HuJ H, PanH, MiyauchiM, JiangL X, CortésE, LiuMNano Lett., 2022, 221963

[51]

ChenQ, LiuK, ZhouY J, WangX Q, WuK Z, LiH M, PensaE, FuJ W, MiyauchiM, CortésE, LiuMNano Lett., 2022, 226276

[52]

DengJ, LeiW Y, FuJ W, JinH L, XuQ L, WangSSolar RRL, 2022, 62200279

[53]

HuT P, LiZ, LuL H, DaiK, ZhangJ F, LiR, LiangC H, ZhuG PJ. Colloid Interf. Sci., 2019, 555166

[54]

ChenG Z, LiH J W, ZhouY J, CaiC, LiuK, HuJ H, LiH M, FuJ W, LiuMNanoscale, 2021, 1313604

[55]

ZhangJ F, FuJ W, DaiKJ. Mater. Sci. Technol., 2022, 116192

[56]

CaoM Q, LiH M, LiuK, HuJ H, PanH, FuJ W, LiuMSolar RRL, 2021, 52000448

[57]

LiW, MengA Y, LiZ, ZhangJ F, FuJ WJ. Cent. South Univ., 2024, 314572

[58]

TianJ Z, GuanC H, HuH B, LiuE Z, YangD YActa Phys.-Chim. Sin., 2025, 41100068

RIGHTS & PERMISSIONS

Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/